NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute)

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY UTTAR PRADESH, LUCKNOW

Evaluation Scheme & Syllabus

For

Bachelor of Technology Computer Science and Engineering (Artificial Intelligence) Fourth Year

(Effective from the Session: 2023-24)

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bachelor of Technology Computer Science and Engineering (Artificial Intelligence) <u>EVALUATION SCHEME</u> SEMESTER-VII

Sl. No.	Subject Codes	Subject Name			Periods				luation Scheme		End Semester		Total	Credit
110.	coues		L	Т	P	СТ	TA	TOTAL	PS	TE	PE			
		WEEKS COMPUL	SO	RY	INI	DUCT	ION							
		PRO	GR/	٩M										
1	ACSML0702	Deep Learning	3	0	0	30	20	50		100		150	3	
2		Departmental Elective-V	3	0	0	30	20	50		100		150	3	
3		Open Elective-II	3	0	0	30	20	50		100		150	3	
4		Open Elective-III	3	0	0	30	20	50		100		150	3	
5	ACSML0752	Deep Learning Lab	0	0	2				25		25	50	1	
6	ACSE0759	Internship Assessment-III	0	0	2				50			50	1	
7		MOOCs (For B.Tech. Hons. Degree)												
		GRAND TOTAL										700	14	

List of MOOCs (Coursera) Based Recommended Courses for Fourth Year (Semester-VII) B. Tech Students

S. No.	Subject Code	Course Name (Blockchain)	University / Industry Partner Name	No of HOURS	Credits
1.	AMC0157	Deep Neural Networks with PyTorch	IBM	30	2
2.	AMC0164	Introduction to Blockchain for Financial Services	INSEAD	29	2
		<u>OR</u>			
S. No.	Subject Code	Course Name (Java)	University / Industry Partner Name	No of HOURS	Credits
1	AMC0151	Blockchain, Cryptoassets, and Decentralized Finance	INSEAD	17	1
2	AMC0105	Developing Cloud Apps with Node.js and React	IBM	16	1

S. No	Subject Code	Course Name (Machine Learning)	University / Industry Partner Name	No of HOURS	Credits
1	AMC0167	Java Servlet Pages (JSPs)	LearnQuest	16	1
2	AMC0165	Introduction to Computer Vision and Image Processing	IBM	21	1.5

OD

PLEASE NOTE:-

• Internship (3-4 weeks) shall be conducted during summer break after semester-VI and will be assessed during Semester-VII

Abbreviation Used: -

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

List of Departmental Electives							
Departmental Electives	Subject Codes	Subject Name	Bucket Name	Branch	Semester		
Elective-V	ACSE0712	RPA Implementation	CRM-RPA	AI	7		
Elective-V	ACSAI0712	Natural Language Processing	Data Analytics	AI	7		
Elective-V	ACSE0713	Web Development using MERN Stack with DevOps	Full Stack Development	AI	7		
Elective-V	ACSE0711	Game Programming	Mobility Management	AI	7		

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bachelor of Technology Computer Science and Engineering (Artificial Intelligence) <u>EVALUATION SCHEME</u> SEMESTER-VIII

SI. No.	Subject Codes	Subject Name	Р	erio	ds	E	valua	tion Scher	me	End Seme		Total	Credit
	Coues		L	Т	Р	СТ	TA	TOTAL	PS	ТЕ	PE		
1		Open Elective-IV	2	0	0	30	20	50		100		150	2
2	ACSE0859/ ACSE0858	Capstone Project/Industrial Internship	0	0	20				200		300	500	10
3		MOOCs (For B.Tech. Hons.											
		Degree)											
4		TOTAL										650	12

List of MOOCs (Coursera) Based Recommended Courses for Fourth Year (Semester-VIII) B. Tech Students

S.no	Subject Code	Course Name	University/Industry Partner Name	No. of Hours	Credit
1	AMC0180	Blockchain Transformations of Financial Services	INSEAD	15 hour	1
2	AMC0179	Blockchain in Financial Services: Strategic Action Plan	INSEAD	14 hours	1
3	AMC0184	Developing Applications with SQL, Databases, and Django	IBM	14	1
4	AMC0187	Getting started with Git & Github	IBM	8	0.5
5	AMC0181	Building Deep learning Models with TensorFlow	IBM	7	0.5
6	AMC0177	AI Capstone Project with Deep Learning	IBM	15 Hours	1
7	AMC0204	Programming Fundamentals Using Python Part- 1	Infosys Springboard	43h 25m	3.5
8	AMC0219	Natural Language Processing with Real World Projects	Infosys Springboard	16 Hours	1
9	AMC0220	Natural Language Processing for Developers	Infosys Springboard	13 hours 37 Minutes	1
10	AMC0221	Deep Learning	Infosys Springboard	10 hours	1
11	AMC0214	The Complete React Developer Course	Infosys Springboard	39 h 55m	3
12	AMC0240	Machine Learning with Real World Projects	Infosys Springboard	30h 46m	2.5

Abbreviation Used: -

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bachelor of Technology Computer Science and Engineering (Artificial Intelligence)

AICTE Guidelines in Model Curriculum:

A student will be eligible to get Under Graduate degree with Honours only, if he/she completes the additional MOOCs courses such as Coursera certifications, or any other online courses recommended by the Institute (Equivalent to 20 credits). During Complete B.Tech. Program Guidelines for credit calculations are as follows.

- 1. For 6 to 12 HOURS =0.5 Credit
- 2. For 13 to18 =1 Credit
- 3. For 19 to 24 =1.5 Credit
- 4. For 25 to 30 =2 Credit
- 5. For 31 to 35 =2.5 Credit
- 6. For 36 to 41 =3 Credit
- 7. For 42 to 47 =3.5 Credit
- 8. For 48 and above =4 Credit

For registration to MOOCs Courses, the students shall follow Coursera registration details as per the assigned login and password by the Institute these courses may be cleared during the B. Tech degree program (as per the list provided). After successful completion of these MOOCs courses, the students shall provide their successful completion status/certificates to the Controller of Examination (COE) of the Institute through their coordinators/Mentors only. The students shall be awarded Honours Degree as per following criterion.

- i. If he / she secures 7.50 as above CGPA.
- ii. Passed each subject of that degree program in the single attempt without any grace.
- iii. Successful completion of MOOCs based 20 credits.

B. TECH FOURTH YEAR

LTP

3 0 0

Credits

3

8 HOURS

Course code | ACSML0702

Course title DEEP LEARNING

Course objective: To be able to learn unsupervised techniques and provide continuous improvement in accuracy and outcomes of various datasets with more reliable and concise analysis results.

Pre-requisites: Python, Basic Modeling Concepts.

	Course Contents / Syllabus	
UNIT-I	INTRODUCTION	8 HOURS

Model Improvement and Performance: Curse of Dimensionality, Bias, and Variance Trade-off, Overfitting and underfitting, Regression - MAE, MSE, RMSE, R Squared, Adjusted R Squared, p-Value, Classification - Precision, Recall, F1, Other topics, K-Fold Cross-validation, RoC curve, Hyper-Parameter Tuning Introduction – Grid search, random search, Introduction to Deep Learning.

Artificial Neural Network: Neuron, Nerve structure and synapse, Artificial Neuron and its model, activation functions, Neural network architecture: Single layer and Multilayer feed-forward networks, recurrent networks. Various learning techniques; Perception and Convergence rule, Hebb Learning. Perceptron's, Multilayer perceptron, Gradient descent, and the Delta rule, Multilayer networks, Derivation of Backpropagation Algorithm.

UNIT-II	CONVOLUTION NEURAL NETWORK	8 HOURS				
What is computer vi	sion? Why Convolutions (CNN)? Introduction to CNN, Training a simple	convolutional				
neural net, Exploring	g the design space for convolutional nets, Pooling layer motivation in CNI	N, Designing a				
convolutional layere	d application, Understanding and visualizing a CNN, Transfer learning a	nd fine-tuning				
CNN, Image classifie	CNN, Image classification, Text classification, Image classification and hyper-parameter tuning, Emerging NN					
architectures.						

UNIT-III	DETECTION & RECOGNITION	8 HOURS

Padding & Edge Detection, Strided Convolutions, Networks in Networks and 1x1 Convolutions, Inception Network Motivation, Object Detection, and YOLO Algorithm.

UNIT-IV

RECURRENT NEURAL NETWORKS

Why use sequence models? Recurrent Neural Network Model, Notation, Back-propagation through time (BTT), Different types of RNNs, Language model and sequence generation, Sampling novel sequences, Vanishing gradients with RNNs, Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), Bidirectional RNN, Deep RNNs

UNIT-V	AUTOENCODERS IN DEEP LEARNING	8 HOURS
	d unsupervised learning, Stacked auto-encoders and semi-supervised learning Dropout and Batch normalization.	,
Course outcor	ne: After completion of this course students will be able to	
CO 1	Analyze the ANN model and understand the ways of accuracy measurement.	K4

CO 2	Develop a convolutional neural network for multi-class classification in images.	K6
		W2
CO 3	Apply a Deep Learning algorithm to detect and recognize an object.	K3
CO 4	Apply RNNs to Time Series Forecasting, NLP, Text and Image	К3
	Classification.	
CO 5	Apply Lower-dimensional representation over higher-dimensional data for	К3
	dimensionality reduction and capture the important features of an object.	
Textbooks:		7 1002
	and Jacek M, "Introduction to Artificial Neural Systems", West Publishing (780534954604	Company, 1992,
	C. M. Neural Networks for Pattern Recognition. Oxford University Press. 199	95.
_	laykin, "Neural Networks and Learning Machines" Third Edition	
	arning", I Goodfellow, Y Bengio and A Courville, 1st Edition 2016	
	tion to Machine Learning with Python ", by Andreas C. Müller, Sarah Guido	
	p Learning with Python by François Chollet 1st Edition	
Reference Bo		
	ng, Zachary C. Lipton, Mu Li, and Alexander J. Smola "Dive into Deep Learn	ing", Release
0.17.4		
2. Artificial Intelligen	Intelligence: A Modern Approach. Prentice Hall Series in Arti Russell, S. and the 2003.	l Norvig, N. Arti
	tube/ Faculty Video Link:	
T T 1 4 4		
Unit 1	(371) Lec-1 Introduction to Artificial Neural Networks - YouTube	
	(3) Deep Learning(CS7015): Lec 8.1 Bias and Variance - YouTube	ha
	 (3) Mod-10 Lec-39 Assessing Learnt classifiers; Cross Validation; - YouTu (3) Lec-1 Introduction to Artificial Neural Networks - YouTube 	<u>be</u>
	(3) Lec-2 Artificial Neuron Model and Linear Regression - YouTube	
	(3) Evaluation and Cross-Validation - YouTube	
Unit 2	(3) Lecture 1 Introduction to Convolutional Neural Networks for Visua	al Recognition -
	YouTube	a Recognition -
	(3) Lecture 2 Image Classification - YouTube	
	(3) Lecture 3 Loss Functions and Optimization - YouTube	
	(3) Hyperparameter optimization - YouTube	
	(3) Deep Learning(CS7015): Lec 11.3 Convolutional Neural Networks - Yo	ouTube
Unit 3	(3) C4W3L09 YOLO Algorithm - YouTube	
	(3) Edge Detection - YouTube	
	(3) Neural Networks - Networks in Networks and 1x1 Convolutions - YouT	<u>'ube</u>
Unit 4	(3) Backpropagation in CNNs - YouTube	
	(3) Deep RNNs and Bi- RNNs - YouTube	
	(3) Deep Learning(CS7015): Lec 13.4 The problem of Exploding and Vanis	hing Gradients -
	YouTube	
	(3) Deep Learning(CS7015): Lec 14.2 Long Short Term Memory(LS7	<u>(M) and Gated</u>
	Recurrent Units(GRUs) - YouTube	
Unit 5	(3) Deep Learning(CS7015): Lec 7.1 Introduction to Autoncoders - YouTu	<u>be</u>
	(3) Deep Learning(CS7015): Lec 9.5 Batch Normalization - YouTube	
	(3) Deep Learning(CS7015): Lec 7.3 Regularization in autoencoders	(Motivation) -
	YouTube	

B. TECH FOURTH YEAR							
Course code	ACSML0752 LTP	Credit					
Course title							
	Suggested list of Experiments	~ ~					
Sr. No.	Name of Experiment	CO					
1	Write a program Print Dimensions of dataset	CO1					
2.	Write a program to Calculate of Accuracy Values.	CO1					
3.	Write a program to Build an Artificial Neural Network by implementing the	CO1					
	Backpropagation algorithm and test the same using appropriate data sets.						
4.	Write a program to Compose Matrix Shape and Tensor Shape.	CO2					
5.	Write a program to showing Accessing and Manipulation of tensors.	CO2					
6.	Write a program to understand the mechanism of practically training a binary classifier.	CO2					
7.	Implement with a program showing Access and manipulation of tensors.	CO2					
8.	Write a program to show Regression Data Sampling.						
9.	Write a program to Combat Overfitting.	CO1					
10.	Write a program Print Dimensions of dataset.	CO2					
11.	Write a program to Calculate of Accuracy Values.	CO2					
12.	Write a program to Build an Artificial Neural Network by implementing the	CO1					
	Backpropagation algorithm and test the same using appropriate data sets.						
13.	Write a program to build a simple autoencoder based on a fully-connected layer	CO3					
	in Keras.						
14.	Implement Long Short-Term Memory Networks using sample data.	CO1					
15.	Write a program showing Automatic Image Captioning with KerasFacial	CO3					
	Recognition.						
Lab Course Ou	utcome: After completion of this course students will be able to						
C01	Develop python programs to work on Data sets and Implement Artificial	K6					
	Neural Network Techniques.						
CO2	Explore different types of tensors and perform exploratory data analysis on	K4					
	different data sets.						
CO3	Apply Automatic Image Captioning with KerasFacial Recognition.	K3					

B. TECH FOURTH YEAR			
Course code	ACSE0712 LTP	Credits	
Course title	RPA IMPLEMENTATION3 0 0	3	
	ve: This course is designed to give a thorough understanding and practical skills in offware robots for Robotic Process Automation (RPA).	developing	
Pre-requisites:	Basic Knowledge of C Programming		
	Course Contents / Syllabus		
UNIT-I	DATA MANIPULATION	8 HOURS	
Manipulation, G	Data Manipulation, Scalar variables, collections and Tables, Text Manipul athering and Assembling Data Recording and Advanced UI Interaction; Recording In op Recording, Web Recording, Input/output Methods, Screen Scraping, Data Scrapin ques.	ntroduction,	
Selectors, Defin RPA Challenge, based automatio	ing and Assessing Selectors, Customization, Debugging, Dynamic Selectors, Partia Image, Text & Advanced Citrix Automation, Introduction to Image & Text Automat n, Keyboard based automation, Information Retrieval, Advanced Citrix Automation sing tab for Images Starting Apps.	al Selectors, tion, Image-	
UNIT-III	DATA TABLES AND AUTOMATION	8 HOURS	
Extracting Data	 les & PDF, Data Tables in RPA, Excel and Data Table Basics Data Manipulation from PDF, extracting a single piece of data, Anchors, Using anchors in PDF. on: Email Automation, Incoming Email automation, Sending Email automation. DEBUGGING AND EXCEPTION HANDLING 	8 HOURS	
	s, Strategies for solving issues, Catching errors.	onoens	
		~	
Orchestrator: Te	nants, Authentication, Users, Roles, Robots, Environments, Queues & Transactions ROBOTIC FRAMEWORK	Schedules. 8 HOURS	
.NET Classes ar	template, Re-Framework template works, Use Re-Framework to automate your own and Objects.	n processes.	
Course outcom	e: After completion of this course students will be able to:		
CO 1	Apply basic concepts and methods from design engineering to explore creative solutions of real-world problems.	K3	
CO 2	Learn Robotic Process Automation, and massive career opportunity in this field.	K2	
CO 3	Implement the knowledge of RPA tools, functions in various industries and perform, control various tasks using RPA bots.	K3	
CO4	Gain expertise in Desktop, Web & Citrix Automation and use RE-Framework to build a structured business automation process.	K2	
CO 5	Develop a real-world workflow automation project and will be able to debug a workflow.	K6	

Textbooks:

- 1) Vaibhav Jain, "Crisper Learning: For UiPath", Latest Edition, Independently Published, 2018.
- 2) Alok Mani Tripathi, "Learning Robotics Process Automation", Latest Edition, Packt Publishing ltd, Birmingham. March 2018

Reference Books/E-Books:

- 1) Kelly Wibbenmeyer, "The Simple Implementation Guide to Robotic Process Automation (RPA)", Latest Edition, iUniverse Press.
- 2) https://www.uipath.com/hubfs/ebook-its-time-to-automate.pdf

Links:

https://www.youtube.com/watch?v=6QoCG6YIPVo&list=PL41Y-9S9wmyJarNN2KnB4XudpT1yE1kVd

https://www.youtube.com/watch?v=YOHFgrOvPTM&list=PL41Y-9S9wmyLvF6Ou0oPhg6MrFWSw7sn4

https://www.youtube.com/watch?v=QMBuyLMjOhM&list=PL41Y-9S9wmyIYX6kciM8DboVYymsv2y6K

https://www.youtube.com/watch?v=KE9raKNTkfI&list=PL41Y-9S9wmyLeXL1DY9j-XepNb_vg9N8t

https://www.youtube.com/watch?v=2rjr8QhD9oc&list=PL41Y-9S9wmyJi2zmWY77yPZrdVI7ab3Ja

Course code	ACSAI0712 LTP	Credits
Course title	NATURAL LANGUAGE PROCESSING3 0 0	3
•	e: The course aims to provide an understanding of the foundational concepts an us is on providing application-based knowledge.	d techniques
Pre-requisites: Learning.	Programming Skills, Data Structures, Algorithms, Probability and Statis	stics, Machine
	Course Contents / Syllabus	
UNIT-I	OVERVIEW OF NATURAL LANGUAGE PROCESSING	8 HOURS
NLP tasks using	NLTK: Tokenization, stemming, lemmatization, stop-word removal, POS tag	gging, Parsing
· · · ·	cognition, coreference resolution.	
UNIT-II	REGULAR EXPRESSIONS	8 HOURS
-	ng: Using Python - Convert to lower case, handle email-id, HTML tags, URLs, alization of data (contractions, standardize) etc.	emojis, repea
pragmatics, Lang UNIT-III	pora, and linguistic resources, Linguistic foundations: Morphology, syntax, guage models: Unigram, Bigram, N-grams. TEXT ANALYSIS AND SIMILARITY	8 HOURS
pragmatics, Lang UNIT-III Text Vectorizatic	uage models: Unigram, Bigram, N-grams.	8 HOURS
pragmatics, Lang UNIT-III Text Vectorizatic Textual Similarit	TEXT ANALYSIS AND SIMILARITY on: Bag-of-Words model and vector space models, Term Presence, Term Freque	8 HOURS
pragmatics, Lang UNIT-III Text Vectorizatic Textual Similarit UNIT-IV Text classificatic modelling, Spam High Level NLP	guage models: Unigram, Bigram, N-grams. TEXT ANALYSIS AND SIMILARITY on: Bag-of-Words model and vector space models, Term Presence, Term Freque y: Cosine similarity, Word Mover's distance, Word embeddings: Word2Vec, G TEXT CLASSIFICATION & NLP APPLICATIONS on: Implement of applications of NLP using text classification- Sentiment A	8 HOURS ncy, TF-IDF loVe. 8 HOURS nalysis, Topic
pragmatics, Lang UNIT-III Text Vectorizatio Textual Similarit UNIT-IV Text classificatio modelling, Spam High Level NLP Dialog systems, o	guage models: Unigram, Bigram, N-grams. TEXT ANALYSIS AND SIMILARITY on: Bag-of-Words model and vector space models, Term Presence, Term Freque y: Cosine similarity, Word Mover's distance, Word embeddings: Word2Vec, G TEXT CLASSIFICATION & NLP APPLICATIONS on: Implement of applications of NLP using text classification- Sentiment A detection. applications: Machine translation: Rule-based and statistical approaches, Text	8 HOURS ncy, TF-IDF loVe. 8 HOURS nalysis, Topic
pragmatics, Lang UNIT-III Text Vectorizatio Textual Similarit UNIT-IV Text classificatio modelling, Spam High Level NLP Dialog systems, o UNIT-V Sequential data, Transformer-base	nuage models: Unigram, Bigram, N-grams. TEXT ANALYSIS AND SIMILARITY on: Bag-of-Words model and vector space models, Term Presence, Term Freque y: Cosine similarity, Word Mover's distance, Word embeddings: Word2Vec, G TEXT CLASSIFICATION & NLP APPLICATIONS on: Implement of applications of NLP using text classification- Sentiment A detection. applications: Machine translation: Rule-based and statistical approaches, Text conversational agents and chatbots. ADVANCED NLP TECHNIQUES Introduction to sequence models - RNN and LSTM, Attention Mechanism ed models: BERT, GPT, T5, Introduction to Hugging Face Transformers, Case sequence	8 HOURS ancy, TF-IDF loVe. 8 HOURS nalysis, Topic summarization 8 HOURS , Transformer
pragmatics, Lang UNIT-III Text Vectorization Textual Similarit UNIT-IV Text classification modelling, Spam High Level NLP Dialog systems, of UNIT-V Sequential data, Transformer-base Course outcome	uage models: Unigram, Bigram, N-grams. TEXT ANALYSIS AND SIMILARITY on: Bag-of-Words model and vector space models, Term Presence, Term Freque y: Cosine similarity, Word Mover's distance, Word embeddings: Word2Vec, G TEXT CLASSIFICATION & NLP APPLICATIONS on: Implement of applications of NLP using text classification- Sentiment A detection. applications: Machine translation: Rule-based and statistical approaches, Text conversational agents and chatbots. ADVANCED NLP TECHNIQUES Introduction to sequence models - RNN and LSTM, Attention Mechanism ed models: BERT, GPT, T5, Introduction to Hugging Face Transformers, Case set After completion of this course students will be able to:	8 HOURS Incy, TF-IDF loVe. 8 HOURS nalysis, Topic summarization 8 HOURS , Transformer studies.
pragmatics, Lang UNIT-III Text Vectorization Textual Similarit UNIT-IV Text classification modelling, Spam High Level NLP Dialog systems, of UNIT-V Sequential data, Transformer-base Course outcome	nuage models: Unigram, Bigram, N-grams. TEXT ANALYSIS AND SIMILARITY on: Bag-of-Words model and vector space models, Term Presence, Term Freque y: Cosine similarity, Word Mover's distance, Word embeddings: Word2Vec, G TEXT CLASSIFICATION & NLP APPLICATIONS on: Implement of applications of NLP using text classification- Sentiment A detection. applications: Machine translation: Rule-based and statistical approaches, Text conversational agents and chatbots. ADVANCED NLP TECHNIQUES Introduction to sequence models - RNN and LSTM, Attention Mechanism ed models: BERT, GPT, T5, Introduction to Hugging Face Transformers, Case set: After completion of this course students will be able to: Appreciate the emerging trends and challenges in NLP and perform the basic	8 HOURS Incy, TF-IDF loVe. 8 HOURS nalysis, Topic summarization 8 HOURS , Transformer studies.
pragmatics, Lang UNIT-III Text Vectorization Textual Similarity UNIT-IV Text classification modelling, Spam High Level NLP Dialog systems, or UNIT-V Sequential data, Transformer-base	uage models: Unigram, Bigram, N-grams. TEXT ANALYSIS AND SIMILARITY on: Bag-of-Words model and vector space models, Term Presence, Term Freque y: Cosine similarity, Word Mover's distance, Word embeddings: Word2Vec, G TEXT CLASSIFICATION & NLP APPLICATIONS on: Implement of applications of NLP using text classification- Sentiment A detection. applications: Machine translation: Rule-based and statistical approaches, Text conversational agents and chatbots. ADVANCED NLP TECHNIQUES Introduction to sequence models - RNN and LSTM, Attention Mechanism ed models: BERT, GPT, T5, Introduction to Hugging Face Transformers, Case set After completion of this course students will be able to:	8 HOURS Incy, TF-IDF IoVe. 8 HOURS nalysis, Topic summarization 8 HOURS , Transformer studies. K2

CO4	Implement NLP techniques to design real-world NLP applications	K6
CO 5	Apply advanced techniques like sequential modelling and attention	K6
	mechanism to develop NLP applications	

Textbooks:

1)Daniel Jurafsky, James H. Martin, "Speech and Language Processing", Second Edition, Pearson Education, 2009 ISBN 0131873210.

2)James Allen, Natural Language Understanding, 2nd edition, 1995 Pearson Education ISBN 13: 9780805303346.

3)Akshar Bharti, Vineet Chaitanya and Rajeev Sangal, NLP: A Paninian Perspective,1st edition1995, Prentice ISSBN 9788120309210

Reference Books:

1)Christopher D.Manning and Hinrich Schutze,, "Foundations of Statistical Natural Language Processing", MIT Press, 1999 Second Edition, ISBN No. 0-262-13360-1.

2)T. Winograd, Language as a Cognitive Process, 1st edition, 1983 Addison- Wesley ISBN 020108-571-2 3)L.M. Ivansca, S. C. Shapiro, Natural Language Processing and Knowledge Representation, 2nd edition, 2000 AAAI Press ISBN-13: 978-0262590211

Links:

1) https://realpython.com/nltk-nlp-python/

2) https://www.coursera.org/lecture/python-text-mining/basic-nlp-tasks-with-nltk-KD8uN

3) https://www.coursera.org/lecture/nlp-sequence-models/learning-word-embeddings-APM5s

4) https://www.coursera.org/projects/regular-expressions-in-python

5) https://www.coursera.org/learn/python-text-mining/lecture/sVe8B/regular-expressions

	B.TECH FOURTHYEAR	
Subject Code: ACSE0713I 3		
	with DevOps	3
pages an MERN s	Objective: This course focuses on how to design and build static as well as dynamic d interactive web applications. Students can understand how to put them together to stack application.	
Pre- req	uisites: Student should have the knowledge of HTML, CSS and ES6	
	Course Contents/Syllabus	1
Unit-1	Introduction to React JS: Overview of frameworks, NPM commands, React App, Project Directory Structure, React Component Basic, Understanding JSX, Props and State, Stateless and Stateful Components, Component life cycle, Hooks, react-router vs react-router-dom,	8 Hours
Unit-2	Connecting React with mongodB: Google Material UI, AppBar, Material UI's Toolbar, NavBar, Material UI Buttons, SQL and Complex Transactions, Dynamic Schema, create Index (), get Indexes () & drop Index (), Replication, Statement-based vs. Binary Replication, Auto-Sharding and Integrated Caching, Load balancing, Aggregation, scalability.	8 Hours
Unit-3	Node js & Express Framework: Introduction, Environment Setup, serving static resources, template engine with vash and jade, Connecting Node.js to Database, Mongoose Module, Creating Rest APIs, Express Framework, MVC Pattern, Routing, Cookies and Sessions, HTTP Interaction, User Authentication	8 Hours
Unit-4	Evolution of DevOps: DevOps Principles, DevOps Lifecycle, DevOps Tools, and Benefits of DevOps, SDLC (Software Development Life Cycle) models, Lean, ITIL and Agile Methodology, Agile vs DevOps, Process flow of Scrum Methodologies, Project planning, scrum testing, sprint Planning and Release management, Continuous Integration and Delivery pipeline.	8 Hours
Unit-5	CI/CD concepts (GitHub, Jenkins, Sonar): GitHub, Introduction to Git, Version control system, Jenkins Introduction, Creating Job in Jenkins, adding plugin in Jenkins, Creating Job with Maven & Git, Integration of Sonar, Dockers, Containers Image: Run, pull, push containers, Container lifecycle, Introduction to Kubernetes.	8 Hours
Course	e Outcomes –	
CO1	Apply the knowledge of ES6 that are vital to implement react application over the web.	K3
CO2	Implement and understand the impact of web designing by database connectivity with Mongodb.	K3
CO3	Explain, analyze and apply the role of server-side scripting language like Nodejs and Express js framework	K4
CO4	Identify the benefits of DevOps over other software development processes to Gain insights into the DevOps environment.	K2
CO5	Demonstrate popular open-source tools with features and associated terminology used to perform Continuous Integration and Continuous Delivery.	K3
Textbo	oks:	
	Kirupa Chinnathambi, "Learning React", 2 nd Edition 2016, Addison Wesley Publication	on.

	Mohan Mehul, "Advanced Web Development with React", 2 nd Edition 2020, BPB Publications.
	Dhruti Shah, "Comprehensive guide to learn Node.js", 1 st Edition, 2018 BPB Publications.
	Jennifer Davis, Ryn Daniels, "Effective DevOps: Building, Collaboration, Affinity, and
	Tooling at Scale", 1 st Edition, 2016, O'Reilly Media Publication.
	John Edward Cooper Berg, "DevOps. Building CI/CD Pipelines with Jenkins, Docker
	Container, AWS (Amazon Web Services) ECS, JDK 11, Git and Maven 3, Sonar, Nexus", Kindle
	Edition,2019, O'Reilly Media Edition.
Refer	ence Books:
	Anthony Accomazzo, Ari Lerner, and Nate Murray, "Fullstack React: The Complete Guide to ReactJS and Friends", 4th edition, 2020 International Publishing.
	David Cho, "Full-Stack React, Type Script, and Node: Build cloud-ready web applications using React 17 with Hooks and GraphQL", 2nd edition, 2017 Packt Publishing Limited.
	Richard Haltman & Shubham Vernekar, "Complete node.js: The fast guide: Learn complete backend development with node.js"5th edition, 2017 SMV publication.
	Glenn Geenen, Sandro Pasquali, Kevin Faaborg, "Mastering Node.js: Build robust and scalable real-time server-side web applications efficiently" 2nd edition Packt,2017 Publishing Limited.
	Greg Lim," Beginning Node.js, Express & MongoDB Development, kindle edition,2019 international publishing.
	Daniel Perkins, "ReactJS Master React.js with simple steps, guide and instructions" 3rd edition, 2015 SMV publication.
	Peter Membrey, David Hows, Eelco Plugge, "MongoDB Basics", 2nd edition ,2018
	International Publication.
Links	: NPTEL/You Tube/Web Link:
https://y	outu.be/QFaFIcGhPoM?list=PLC3y8-rFHvwgg3vaYJgHGnModB54rxOk3
	outu.be/pKd0Rpw7O48
	outu.be/TIB_eWDSMt4
https://y	outu.be/QFaFIcGhPoM
	outu.be/Kvb0cHWFkdc
	outu.be/pQcV5CMara8
	outu.be/c3Hz1qUUIyQ
	outu.be/Mfp94RjugWQ
	outu.be/SyEQLbbSTWg
	outu.be/BL132FvcdVM outu.be/fCACk9ziarQ
	outu.be/YSyFSnisip0
	outu.be/7H_QH9nipNs
	outu.be/AX1AP83CuK4
	outu.be/2N-59wUIPVI
	outu.be/hQcFE0RD0cQ
	outu.be/UV16BbPcMQk
	outu.be/fqMOX6JJhGo
	outu.be/m0a2CzgLNsc
· · · ·	outu.be/1ji_9scA2C4
· · · ·	outu.be/tuIZok81iLk
· · · ·	outu.be/IluhOk86prA
\pm HLDSI//V	outu.be/13FpCxCCILY