Affiliated to
DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW

Evaluation Scheme \& Syllabus

For

B.Tech in Computer Science \& Engineering (CSE) First Year

 (Effective from the Session: 2020-21)
NOIDA INSTITUTE OF ENGINEERING \& TECHNOLOGY, GREATER NOIDA (An Autonomous Institute)

B. TECH (CSE)

Evaluation Scheme SEMESTER I

$\begin{gathered} \text { Sl. } \\ \text { No } \\ \text { (} \end{gathered}$	Subject Codes	Subject	Periods			Evaluation Schemes				$\begin{gathered} \text { End } \\ \text { Semeste } \end{gathered}$		$\begin{gathered} \text { Tot } \\ \text { al } \end{gathered}$	Credit
			L	T	P	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & \mathbf{T} \\ & \mathbf{A} \end{aligned}$	$\begin{gathered} \text { TOTA } \\ \mathrm{L} \\ \hline \end{gathered}$	PS	TE	$\begin{aligned} & \hline \mathbf{P} \\ & \mathbf{E} \end{aligned}$		
3 WEEKS COMPULSORY INDUCTION PROGRAM													
1	AAS0103	Engineering Mathematics-I	3	1	0	30	20	50		100		150	4
2	AEC0101	Basic Electrical and Electronics Engineering.	3	1	0	30	20	50		100		150	4
3	ACSE0101	Problem Solving using Python	3	0	0	30	20	50		100		150	3
4	AASL0101	Professional Communication	2	0	0	30	20	50		100		150	2
5	AEC0151	Basic Electrical and Electronics Engineering Lab	0	0	2				25		25	50	1
6	ACSE0151	Problem Solving using Python Lab	0	0	2				25		25	50	1
7	AASL0151	Professional Communication Lab	0	0	2				25		25	50	1
8	AME0151	Digital Manufacturing Practices	0	0	3				25		25	50	1.5
9		MOOCs (For B.Tech. Hons. Degree)											
		TOTAL										800	17.5

NOIDA INSTITUTE OF ENGINEERING \& TECHNOLOGY, GREATER NOIDA (An Autonomous Institute)

B. TECH (CSE)
 Evaluation Scheme SEMESTER II

$\begin{aligned} & \text { SI. } \\ & \text { N } \\ & \mathbf{0} . \end{aligned}$	Subject Codes	Subject	Periods			Evaluation Schemes				End Semester		$\begin{gathered} \text { Tot } \\ \text { al } \end{gathered}$	$\underset{t}{\text { Credi }}$
			L	T	P	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & \mathbf{T} \\ & \mathbf{A} \end{aligned}$	$\underset{L}{\text { TOTA }}$	PS	TE	PE		
1	AASO203	Engineering MathematicsII	3	1	0	30	20	50		100		150	4
2	ACSE0203	Design Thinking-I	3	1	0	30	20	50		100		150	4
3	AAS0201A	Engineering Physics	3	1	0	30	20	50		100		150	4
4	ACSE0202	Problem Solving using Advanced Python	3	1	0	30	20	50		100		150	4
5		Foreign Language*	2	0	0	30	20	50		50		100	2
6	AAS0251A	Engineering Physics Lab	0	0	2				25		25	50	1
7	ACSE0252	Problem Solving using Advanced Python Lab	0	0	2				25		25	50	1
8	AME0252	Engineering Graphics \& Solid Modelling	0	0	3				25		25	50	1.5
		MOOCs (For B.Tech. Hons. Degree)											
		TOTAL										850	21.5
Mini Project or Internship (3-4 weeks) shall be conducted during summer break after II semester and will be assessed during III semester													

* List of MOOCs (NPTEL) Based Recommended Courses for first year B. Tech Students

1. Developing Soft Skills and personality-Odd Semester-8 Weeks-3 Credits
2. Enhancing Soft Skills and personality-Even Semester-8 Weeks-3 Credits

* AICTE Guidelines in Model Curriculum:

After successful completion of 160 credits, a student shall be eligible to get Under Graduate degree in Engineering. A student will be eligible to get Under Graduate degree with Honours only, if he/she completes additional university recommended courses only (Equivalent to 20 credits; NPTEL Courses of 4 Weeks, 8 Weeks and 12 Weeks shall be of 2, 3 and 4 Credits respectively) through MOOCs. For registration to MOOCs Courses, the students shall follow NPTEL Site http://nptel.ac.in/ as per the NPTEL policy and norms. The students can register for these courses through NPTEL directly as per the course offering in Odd/Even Semesters at NPTEL. These NPTEL courses (recommended by the University) may be cleared during the B. Tech degree program (not necessary one course in each semester). After successful completion of these MooCs courses the students, shall, provide their successful completion NPTEL status/certificates to the University (COE) through their college of study only. The student shall be awarded Hons. Degree (on successful completion of MOOCS based 20 credit) only if he/she secures 7.50 or above CGPA and passed each subject of that Degree Programme in single attempt without any grace marks.

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.
*Foreign Language :

1. AASLO202 French
2. AASL0203 German
3. AASL0204 Japanese

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

CO 4	Apply the concept of multiple integral to find area, volume, centre of mass and centre of gravity.	K_{3}
CO 5	Solve the problems of Profit, Loss, Number \& Series, Coding \& decoding.	K_{3}
Text books		
(1) B. V. Ramana, Higher Engineering Mathematics, Tata Mc Graw-Hill Publishing Company Ltd..		
(2) B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher.		
(3) R K. Jain \& S R K. Iyenger, Advance Engineering Mathematics, Narosa Publishing House .		
Reference Books:		
(1) E. Kreyszig, Advance Engineering Mathematics, John Wiley \& Sons.		
(2) Peter V. O’Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning.		
(3) Maurice D. Weir, Joel Hass, Frank R. Giordano, Thomas, Calculus, Eleventh Edition, Pearson.		
(4) D. Poole, Linear Algebra : A Modern Introduction, 2nd Edition, Brooks/Cole.		
(5) Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.		
(6) Ray Wylie C and Louis C Barret, Advanced Engineering Mathematics, Tata Mc-Graw-Hill; Sixth Edition.		
(7) P. Sivaramakrishna Das and C. Vijayakumari, Engineering Mathematics, 1st Edition, Pearson India Education Services Pvt. Ltd		
(8) Advanced Engineering Mathematics. Chandrika Prasad, ReenaGarg.		
(9) Engineering Mathemathics - I. ReenaGarg.		
(10) Quantitative Aptitude by R.S. Aggrawal.		
Link:		
Unit 1	https://www.youtube.com/watch?v=kcL5WWJjmIU https://www.youtube.com/watch?v=VTHz4gizsKI https://youtu.be/56dEt9EOZ_M https://www.youtube.com/watch?v=njDiwB43w80 https://www.youtube.com/watch?v=N33SOw1A5fo https://www.youtube.com/watch?v=yLi8RxqfowA www.math.ku.edu/~lerner/LAnotes/Chapter5.pdf http://www.math.hawaii.edu/~lee/linear/sys-eq.pdf https://youtu.be/41Y38WjHbtE https://www.youtube.com/watch?v=4jcvZmMK_28 https://www.youtube.com/watch?v=G4N8vJpf7hM https://www.youtube.com/watch?v=r5dIXpssvrA https://youtu.be/ZX5YnDMzwbs http://web.mit.edu/2.151/www/Handouts/CayleyHamilton.pdf https://www.youtube.com/watch? $\mathrm{v}=\mathrm{iKQESPLDnnI}$ https://math.okstate.edu/people/binegar/3013-S99/3013-116.pdf https://www.youtube.com/watch?v=kGdezES-bDU	
Unit 2	https://www.youtube.com/watch? v=tQxk5IX9S 8\&list=PLbu fGT0MPstS3DTIyqkUecSW 7axdxKe	

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

	https://www.youtube.com/watch?v=U5sGFf0DjLs\&t=34s https://www.youtube.com/watch?v=TCPPvRfHtXw https://www.youtube.com/watch? v=PkuPGKSacu0\&list=PL2FUpm_Ld1Q3H00wVFuwjWOo1gtMXk1eb https://www.youtube.com/watch?v=QeWrQ9Fz3Wo\&t=22s https://www.youtube.com/watch?v=5dFrWCE6bHg https://www.youtube.com/watch?v=WX609TiFYsA\&t=110s https://www.youtube.com/watch? $\mathrm{v}=\mathrm{GII} 1 \mathrm{ssdR} 2 \mathrm{cg} \&$ list=PLhSp9OSVmeyK2yt8hdoo3Qze3O0Y67qaY
Unit 3	https://www.youtube.com/watch?v=6tQTRlbkbc8 https://www.youtube.com/watch? v=McT-UsFx1Es https://www.youtube.com/watch?v=1TNtFqiFQo https://www.youtube.com/watch?v=X6kp2o3mGtA https://www.youtube.com/watch?v=btLWNJdHzSQ https://www.youtube.com/watch?v=jiEaKYIOATY https://www.youtube.com/watch?v=r61DwJZmfGA https://www.youtube.com/watch?v=Jk9xMY4mPH8 https://www.youtube.com/watch?v=fqq_UR4zhfI https://www.youtube.com/watch?v=G0V_yp0jz5c https://www.youtube.com/watch?v=9-tir2V3vYY https://www.youtube.com/watch?v=jGwA4hknYp4
Unit 4	https://www.youtube.com/watch?v=3BbrC9JcjOU https://www.youtube.com/watch?v=-DduB46CoZY https://www.youtube.com/watch?v=VvKAuFBJLs0 https://www.youtube.com/watch?v=4rc3w1sGoNU https://www.youtube.com/watch?v=X6kp2o3mGtA\&t=1003s https://www.youtube.com/watch?v=wtY5fx6VMGQ\&t=1151s https://www.youtube.com/watch? v=-I3HUeHilYs\&t=1933s https://www.youtube.com/watch?v=kfv9h3c46CI https://www.youtube.com/watch?v=9 m36W3cK74 https://www.youtube.com/watch?v=HQM7XMd5QQo - https://www.GovernmentAdda.com
Unit 5	https://www.GovernmentAdda.com

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

B.TECH FIRST YEAR		
Course Code	AEC0101 ${ }^{\text {L T P }}$	Credits
Course Title	Basic Electrical and Electronics Engineering 310	4
Course objective:		
	1. To provide the basics of DC and AC analysis of (Single phase and Three phase) electrical circuits. 2. To study the basics of transformer and calculate its efficiency. 3. To impart elementary knowledge of Power System Components, Earthing, and Energy Consumption. 4. To provide the knowledge of Diode, Display devices, Op-Amp, Sensors, IoT and its application.	
Pre-requisites: Basic knowledge of 12th Physics and Mathematics		
Course Contents / Syllabus		
UNIT-I	D.C CIRCUIT ANALYSIS AND NETWORK THEOREMS Concept of network, Active and passive elements, voltage and current sources, concept of linearity and linear network, unilateral and bilateral elements, source transformation, Kirchoff's Law: loop and nodal methods of analysis, star delta transformation, network theorems: Superposition theorem, Thevenin's theorem, Norton's theorem, maximum power transfer theorem.	10
UNIT-II	STEADY STATE ANALYSIS OF AC CIRCUIT Single phase AC circuit: AC fundamentals, concept of phasors, phasor representation of sinusoidally varying voltage and current, analysis of series and parallel RLC circuits, j-notation, Different types of power, power factor, resonance in series and parallel circuits. Three phase AC circuit: Advantages of three phase circuit, voltage and current relations in star and delta connections.	10
UNIT-III	SINGLE PHASE TRANSFORMER AND ELEMENTS OF POWER SYSTEM Single Phase Transformer: Principle of operation, construction, EMF equation, equivalent circuit, losses and efficiency. Introduction to Elements of Power System: General layout of Power system, Components of Distribution system: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Importance of Earthing, Elementary calculations for energy consumption, Battery Backup.	09

UNIT-IV	$\begin{array}{l}\text { SEMICONDUCTOR DIODE AND THEIR APPLICATIONS } \\ \text { Introduction of Semiconductors: Intrinsic and Extrinsic, P-N } \\ \text { Junction Diode: Depletion layer, V-I characteristics, Half and Full } \\ \text { Wave rectification, Clippers, Breakdown Mechanism: Zener and } \\ \text { Avalanche, Zener Diode as Shunt Regulator. }\end{array}$		
Display Devices			
Liquid Crystal Display (LCD), Light Emitting Diode (LED), Organic-			
Light Emitting Diode (O-LED), 7-segment display.			

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

5. Jacob Millman, C.C. Halkias, Stayabratajit, "Electronic Devices and Circuits", Latest Edition, TMH.	
NPTEL/Youtube/ Faculty Video Link:	
Unit 1	1. https://youtu.be/FjaJEo7knF4 2. https://youtu.be/UsLbB5k9iuY 3. https://youtu.be/1QfNg9650yE 4. https://youtu.be/wWihXHCOmUc
Unit 2	5. https://youtu.be/uIGKCeOoR88 1. https://youtu.be/YLGrugmDvc0 2. https://youtu.be/0f7YkVorOmY 3. https://youtu.be/LM2G3cunKp4 6. https://youtu.be/S5464NnKOq4
Unit 3	1. https://youtu.be/GgckE4H5AJE 2. https://youtu.be/OKkOif2JYRE 3. https://youtu.be/qSyUFp3Qk2I 4. https://youtu.be/GROtUE6ILc4 7. https://youtu.be/k_FqhEOuNEU
Unit 4	1. https://youtu.be/EdUAecpYVWQ? list=PLwjK_iyK4LLBj2yTYPYKFKdF6kIg0ccP2 2. https://youtu.be/MZPeRlst8rQ 3. https://youtu.be/qQucInufX-s 4. https://youtu.be/tPFI2 PdCYA 8. https://youtu.be/zA-UtZ-s9GA
Unit 5	1. https://youtu.be/AuZ00cQ0UrE? list=PLwjK_iyK4LLDBB1E9MFbxGCEnmMMOAXOH 2. https://youtu.be/aU24RWIgJVs?list=PLwjK iyK4LLDBB1E 3. https://youtu.be/c5NeTnp poA 4. https://youtu.be/KLGbPgls18k 5. https://youtu.be/UFJzQH3G1Ko?list=PLVrieKUj5RceFRq5MKy-fEHdumStFPLt

Course Code	ACSE0101	$\mathbf{L} \quad \mathbf{T}$ P	Credit	
Course Title	Problem solving using Python	$\mathbf{3}$ 0	$\mathbf{0}$	$\mathbf{3}$
Course objective:	To impart knowledge of basic building blocks of Python programming			
1	To provide skills to design algorithms for problem solving			
2	To impart the knowledge of implementation and debugging of basic programs in Python			
3	To disseminate the knowledge of basic data structures			
4	To provide the knowledge of file system concepts and its application in data handling			
5				

Pre-requisites:Students are expected to be able to open command prompt window or terminal window, edit a text file, download and install software, and understand basic programming concepts.

Course Contents / Syllabus

UNIT-I	Basics of python programming	8 hours

Introduction: Introduction to computer system, algorithms, Ethics and IT policy in company, Feature of object-oriented programming, A Brief History of Python,Applications areas of python, The Programming Cycle for Python, Python IDE, Interacting with Python Programs.

Elements of Python:keywords and identifiers, variables, data types and type conversion, operators in python, expressions in python, strings.

UNIT-II	Decision Control Statements	8 hours

Conditionals: Conditional statement in Python (if-else statement, its working and execution),
Nested-if statement and elif statement in Python, Expression Evaluation \& Float Representation.

Loops: Purpose and working of loops, while loop, For Loop, Nested Loops,Break and Continue, pass statement.

UNIT-III	Function and Modules	$\mathbf{8}$ hours
Introduction of Function, calling a function, Function arguments, built in function, scope		

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.
rules, Passing function to a function, recursion, Lambda functions
Modules and Packages: Importing Modules, writing own modules, Standard library modules, dir() Function, Packages in Python

UNIT-IV	BasicData structures in Python	8 hours

Strings: Basic operations, IndexingandSlicing of Strings, Comparing strings, Regular expressions.

Python BasicData Structure: Sequence, Unpacking Sequences, Mutable Sequences, Lists,ListComprehension, Looping in lists, Tuples, Sets, Dictionaries

UNIT-V	File and Exception handling	8 hours

Files and Directories: Introduction to File Handling in Python, Reading and Writing files, Additional file methods, Working with Directories.

Exception Handling, Errors, Run Time Errors, Handling IO Exception, Try-except statement, Raise, Assert

Searching \&Sorting:Simple search \& Binary search,Selection Sort, Merge Sort

Course outcome: At the end of course, the student will be able to

CO 1	Write simple python programs.	K_{2}, K_{3}
CO 2	Develop python programs usingdecision control statements	K_{3}, K_{6}
CO 3	Implement user defined functions and modules in python	K_{2}
CO 5	Implement python data structures -lists, tuples, set, dictionaries	K_{3}
Text borform input/output operations with files in python and		
implement searching, sorting and merging algorithms	K_{3}, K_{4}	
(1) Magnus Lie Hetland, "Beginning Python-From Novice to Professional"--Third Edition, Apress		
(2) Python Programming using Problem solving approach by ReemaThareja OXFORD Higher education (3) Kenneth A. Lambert, -Fundamentals of Python: First Programs, CENGAGE Learning,		

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

2012.
 Reference Books

(1) John V Guttag, —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013
(2) Charles Dierbach, -Introduction to Computer Science using Python: A Computational Problem Solving Focus, Wiley India Edition, 2013.
(3) Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O‘Reilly Publishers, 2016
(4) Robert Sedgewick, Kevin Wayne, Robert Dondero: Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd.,2016.
(5) Timothy A. Budd, -Exploring Pythonll, Mc-Graw Hill Education (India) Private Ltd., 2015.
(6) Guido van Rossum and Fred L. Drake Jr, -An Introduction to Python - Revised and updated for Python 3.2, Network Theory Ltd., 2011.

E-book and E-Content

(1) https://www.pdfdrive.com/hacking-hacking-practical-guide-for-beginners-hacking-with-pythn-e182434771.html
(2) https://www.pdfdrive.com/python-programming-python-programming-for-beginners-python-programming-for-intermediates-e180663309.html
(3)https://www.pdfdrive.com/pvthon-algorithms-mastering-basic-algorithms-in-the-pvthon-language-e $175246184 . \mathrm{html}$
(4) https://www.pdfdrive.com/python-algorithms-mastering-basic-algorithms-in-the-python-language-e160968277.html
(5) https://docs.python.org/3/library/index.html
(6) https://www.w3schools.com/python/
(7) https://www.py4e.com/materials

Reference Links

Unit-1 https://nptel.ac.in/courses/106/106/106106182/

Unit-2 https://nptel.ac.in/courses/106/106/106106212/

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

Unit-3 https://nptel.ac.in/courses/106/106/106106145/
Unit-4- https://nptel.ac.in/courses/106/106/106106145/
Unit-5- https://nptel.ac.in/courses/106/106/106106145/
[Unit-2]- https://www.youtube.com/watch? $\mathrm{v}=$ PqFKRqpHrjw
[Unit - 3]- https://www.youtube.com/watch?v=m9n2f9/htrw https://www.youtube.com/watch? $v=o S P M m e a i Q 68$
[Unit 4]- https://www.youtube.com/watch? $\mathrm{v}=$ ixEeeNjjOJ0\&t=4s
[Unit-5]- https://www.youtube.com/watch? $\mathrm{v}=$ NMTEjQ8-AJM
After Completing Course Student may get certification in python using following links: Link for Certification: https://swayam.gov.in/nd1_noc19_cs41/preview https://aktu.ict.iitk.ac.in/courses/python-programming-a-practical-approach/

B TECH FIRST YEAR

Course Code	AASL0101	L T P	Credit
Course Title	Professional Communication	$2 \quad 0 \quad 0$	02
Course objective:			

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

1	The objective of the course is to ensure that the students can communicate effectively, in clear and correct English, in a style appropriate to the occasion.					

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

$>$ Basics of Presentation, PPT support	
$>$ Online Presentations \& Etiquette	
$>$	Facing an Interview

Course outcome:

At the end of the course students will be able to

CO 1	Understand the basic objective of the course and comprehend texts for professional reading tasks in preparation for an International Certification in Business English.	
CO 2	Write professionally in simple and correct English.	
CO 3	Interpret listening tasks for better professional competence.	
CO 4	Recognize the elements of effective speaking with emphasis on applied phonetics.	
CO 5	Apply the skill of speaking at the workplace.	
Text books		

1. Cambridge English Business Benchmark (Pre-intermediate to Intermediate), 2nd edition, Norman Whitby, Cambridge University Press, 2006, UK.
2. Improve Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, New Delhi.
3. Technical Communication - Principles and Practices by Meenakshi Raman \&Sangeeta Sharma, Oxford Univ. Press, 2016, New Delhi.

Reference Books

1. Talbot, Fiona. Improve Your Global Business English Kogan Page, 2012.
2. Leech Geoffrey.Communicative Grammar ofEnglishPearsonEducationHarlow, United Kingdom, 1994.
3. Sethi J. Course in Phonetics and Spoken EnglishPrentice Hall India Learning Private Limited; 2 edition (1999)
4. Rebecca Corfield. Preparing the Perfect CV. Kogan Page Publishers, 2009.
5. Anderson, Paul V. Technical communication. 8th ed. Cengage Learning, 2011.
6. IELTS 11: General Training with answers. Cambridge English

Course Code	AEC0151	L T P	Credit
Course Title	Basic Electrical and Electronics Engineering Lab	$\mathbf{0 0 2}$	01
Suggested list of Experiment			

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

Sr. No.	Name of Experiment	CO
$\mathbf{1}$	To Verify Kirchhoff's laws of a circuit	1
$\mathbf{2}$	To Verify Superposition Theorem of a circuit	1
$\mathbf{3}$	To Verify Thevenin's Theorem of a circuit	1
$\mathbf{4}$	To Verify Norton's Theorem of a circuit	1
$\mathbf{5}$	To Verify Maximum Power Transfer Theorem of a circuit	1
$\mathbf{6}$	Measurement of power and power factor in a single phase ac series inductive circuit and study improvement of power factor using capacitor	2
$\mathbf{7}$	Study of phenomenon of resonance in RLC series circuit and obtain resonant frequency.	$\mathbf{2}$
$\mathbf{8}$	Determination of efficiency by load test on a single phase transformer having constant input voltage using stabilizer.	$\mathbf{3}$
$\mathbf{9}$	Study and Calibration of single phase energy meter.	3
$\mathbf{1 0}$	To design half wave rectifier circuits using diode.	4
$\mathbf{1 1}$	To generate random numbers using 7-Segment display. $\mathbf{1 2}$ Study of Cathode Ray Oscilloscope and measurement of different parameters using CRO.	4
$\mathbf{1 3}$	To design and perform Adder and Subtractor circuit using Op-Amp.	5
$\mathbf{1 4}$	To understand the concept of Wireless Home Automation System based on IoT for controlling lights and fans.	5
$\mathbf{1 5}$	To calculate and draw different electrical parameter using MATLAB/Simulink for a circuit.	1,4
$\mathbf{1 6}$	Energy audit of labs and rooms of different blocks.	3
$\mathbf{L a b}$ Course Outcome: After successful completion of this course students will be able to:		
CO 1	Apply the principle of KVL/KCL and theorem to analysis DC Electric circuits.	
CO 2	Demonstrate the behavior of AC circuits connected to single phase AC supply and measure power in single phase as well as three phase electrical circuits.	
CO 3	Calculate efficiency of a single phase transformer and energy consumption.	
CO 4	Understand the concept and applications of diode, Op-Amp,sensors and IoT.	

NPTEL/ YouTube/ Faculty Video Link:

1. Virtual Lab Website"http://www.vlab.co.in/

B.TECH. FIRST YEAR			
Lab Code	ACSE0151	L T P	Credit
Lab Title	Problem Solving using Python Lab	$\mathbf{0 0 5}$	$\mathbf{1}$

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

Course outcome: At the end of course, the student will be able to		
CO 1	Write simple python programs.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
CO 2	Implement python programs usingdecision control statements	$\mathrm{K}_{3}, \mathrm{~K}_{6}$
CO 3	Writing python programs using user defined functions and modules	K_{2}
CO 4	Implement programs using python data structures -lists, tuples, set, dictionaries	K_{3}
CO 5	Write programs to perform input/output operations on files	$\mathrm{K}_{3}, \mathrm{~K}_{4}$

List of Experiment:		
List of Fundamental Programs		
S.N.	Program Title	Catagory
1	Python Program to print "Hello Python"	Basic
2	Python Program to read and print values of variables of different data types.	Basic
3	Python Program to perform arithmetic operations on two integer numbers	Basic
4	Python Program to Swap two numbers	Basic
5	Python Program to convert degree Fahrenheit into degree Celsius	Operators
6	Python Program to demonstrate the use of relational operators.	Operators
7	Python Program to understand the working of bitwise and logical operators.	Operators
8	Python Program to calculate roots of a quadratic equation.	Conditio nal
9	Python Program to check whether a year is leap year or not.	Conditio nal
10	Python Program to find smallest number among three numbers.	Conditio nal
11	Python Program to make a simple calculator.	Conditio nal
12	Python Program to find the factorial of an integer number.	Loop
13	Python Program to find the reverse of an integer number.	Loop
14	Python Program to find and print all prime numbers in a list.	Loop
15	Python Program to Find the Sum of ' n ' Natural Numbers	Loop
16	Python Program to print sum of series: $-1 / 2+2 / 3+3 / 4+\ldots . .+\mathrm{n} /(\mathrm{n}+1)$	Loop
17	Python Program to print pattern using nested loop	Loop
18	Python Program to Display the multiplication Table of an Integer	Loop
19	Python Program to Print the Fibonacci sequence	Loop
20	Python Program to Check Armstrong Number	Loop
21	Python Program to Find Armstrong Number in an Interval	Loop
22	Python Program to check Using function whether a passed string is palindrome or not	Function

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

23	Python Program using function that takes a number as a parameter, check whether the number is prime or not.	Function
24	PythonProgram using function that computes gcd of two given numbers.	Function
25	Python Program to Find LCM of two or more given numbers.	Function
26	Python Program to Convert Decimal to Binary, Octal and Hexadecimal	Function
27	Python Program To Find ASCII value of a character	Basic
28	Python Program to Display Calendar	Loop
29	Python Program to Add Two Matrices	Loop
30	Python Program to Multiply Two Matrices	Loop
31	Python Program to Transpose a Matrix	Loop
32	Python Program to Sort Words in Alphabetic Order	Sorting
33	Python Program to Display Fibonacci Sequence Using Recursion	Recursio n
34	Python Program to Find Factorial of Number Using Recursion	Recursio n
35	Python Program that implements different string methods.	String
36	Python Program that validates given mobile number. Number should start with 7, 8 or 9 followed by 9 digits.	String
37	Python Program to implement various methods of a list.	List
38	Python Program that has a nested list to store toppers details. Edit the details and reprint them.	List
39	Python Program to swap two values using tuple assignment.	Tuple
40	Python Program that has a set of words in English language and their corresponding Hindi words. Define dictionary that has a list of words in Hindi language and their corresponding Hindi Sanskrit. Take all words from English language and display their meaning in both languages.	Dictionar y
41	Python Program that inverts a dictionary.	Dictionar y
42	Python Program that reads data from a file and calculates percentage of white spaces, lines, tabs, vowels and consonants in that file.	File
43	Python Program that fetches data from a given url and write it in a file.	File
44	Python Program to understand the concept of Exception Handling	Exceptio n Handling
45	Python Program to implement linear and binary search	Searchin g
46	Python Program to sort a set of given numbers using Bubble sort	Sorting
S.No	Word Problem Experiments	
1.	String Rotation	

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

| Problem Description
 Rotate a given String in the specified direction by specified magnitude.
 After each rotation make a note of the first character of the rotated String, after all rotation
 are performed the accumulated first character as noted previously will form another string,
 say FIRSTCHARSTRING.
 Check If FIRSTCHARSTRING is an Anagram of any substring of the Original string.
 If yes print "YES" otherwise "NO". Input
 The first line contains the original string s. The second line contains a single integer q. The
 ith of the next q lines contains character d[i] denoting direction and integer r[i] denoting
 the magnitude.
 Constraints
 $1<=$ Length of original string <= 30
 $1<=$ q < 10
 Output
 YES or NO
 Explanation
 Example 1
 Input
 carrace
 3 |
| :--- | :--- | :--- | :--- |
| L 2 |
| R 2 |
| L 3 |
| Output |
| NO |
| Explanation |
| After applying all the rotations, the FIRSTCHARSTRING string will be "rcr" which is not |
| anagram of any sub string of original string "carrace". |

	Example 1 Input 44 11213113 G GGG G W W M G G W W M G M M Output 75.00
3.	Bank Compare Problem Description There are two banks; Bank A and Bank B. Their interest rates vary. You have received offers from both bank in terms of annual rate of interest, tenure and variations of rate of interest over the entire tenure. You have to choose the offer which costs you least interest and reject the other. Do the computation and make a wise choice. The loan repayment happens at a monthly frequency and Equated Monthly Installment (EMI) is calculated using the formula given below : EMI $=$ loanAmount * monthlyInterestRate/($1-1 /(1$ +monthlyInterestRate)^(numberOfYears * 12)) Constraints $\text { i. } \quad 1<=\mathrm{P}<=1000000$ ii. $\quad 1<=\mathrm{T}<=50$ iii. $\quad 1<=\mathrm{N} 1<=30$ iv. $\quad 1<=\mathrm{N} 2<=30$ Input Format First line : P - principal (Loan Amount) Second line : T - Total Tenure (in years). Third Line : N1 is number of slabs of interest rates for a given period by Bank A. First slab starts from first year and second slab starts from end of first slab and so on. Next N1 line will contain the interest rate and their period. After N1 lines we will receive N2 viz. the number of slabs offered by second bank. Next N2 lines are number of slabs of interest rates for a given period by Bank B. First slab starts from first year and second slab starts from end of first slab and so on. The period and rate will be delimited by single white space. Output Your decision - either Bank A or Bank B. Explanation Example 1 Input

	10000 20 3
59.5	
109.6	
58.5	
3	
106.9	
58.5	
57.9	
Output	
Bank B	Cross Words Problem Description A crossword puzzle is a square grid with black and blank squares, containing clue numbers (according to a set of rules) on some of the squares. The puzzle is solved by obtaining the solutions to a set of clues corresponding to the clue numbers. The solved puzzle has one letter in each of the blank square, which represent a sequence of letters (consisting of one or more words in English or occasionally other languages) running along the rows (called "Across", or "A") or along the columns (called "Down" or "D"). Each numbered square is the beginning of an Across solution or a Down solution. Some of the across and down solutions will intersect at a blank square, and if the solutions are consistent, both of them will have the same letter at the intersecting square. In this problem, you will be given the specifications of the grid, and the solutions in some random order. The problem is to number the grid appropriately, and associate the answers consistently with the clue numbers on the grid, both as Across solutions and as Down solutions, so that the intersecting blank squares have the same letter in both solutions. Rules for Clue Numbering The clue numbers are given sequentially going row wise (Row 1 first, and then row2 and so on) Only blank squares are given a clue number A blank square is given a clue number if either of the following conditions exist (only one number is given even if both the conditions are satisfied) It has a blank square to its right, and it has no blank square to its left (it has a black square to its left, or it is in the first column). This is the beginning of an Across solution with that number It has a blank square below it, and no blank square above it (it has a black square above it or it is in the first row). This is the beginning of a Down solution with that number Constraints \quad is<=N<=15 5<=M<=50

Input Format

The input consists of two parts, the grid part and the solution part
The first line of the grid part consists of a number, N , the size of the grid (the overall grid is NxN) squares. The next N lines correspond to the N rows of the grid. Each line is comma separated, and has number of pairs of numbers, the first giving the position (column) of the beginning of a black square block, and the next giving the length of the block. If there are no black squares in a row, the pair " 0,0 " will be specified. For example, if a line contains " $2,3,7,1,14,2$ ", columns $2,3,4$ (a block of 3 starting with 2), 7 (a block of 1 starting with 7) and 14,15 (a block of 2 starting with 14) are black in the corresponding row.
The solution part of the input appears after the grid part. The first line of the solution part contains M, the number of solutions. The M subsequent lines consist of a sequence of letters corresponding to a solution for one of the Across and Down clues. All solutions will be in upper case (Capital letters)

Output

The output is a set of M comma separated lines. Each line corresponds to a solution, and consists of three parts, the clue number, the letter A or D (corresponding to Across or Down) and the solution in to that clue (in upper case)
The output must be in increasing clue number order. Ifa clue number has both an Across and a Down solution, they must come in separate lines, with the Across solution coming before the Down solution.

Explanation

Example 1
Input
5
5,1
1,1,3,1,5,1
0,0
1,1,3,1,5,1
1,1
5
EVEN
ACNE
CALVE
PLEAS
EVADE

Output
1,A,ACNE
2,D,CALVE
3,D,EVADE

	4,A,PLEAS 5,A,EVEN					
5.	Skateboard Problem Description The amusement park at Patagonia has introduced a new skateboard competition. The skating surface is a grid of $\mathrm{N} \times \mathrm{N}$ squares. Most squares are so constructed with slopes that it is possible to direct the skateboard in any of up to three directions of the possible four (North ,East, South or West, represented by the letters N, E, S and W respectively). Some squares however have a deep drop from the adjacent square from which it is impossible to go to any adjacent square. These are represented by D (for Drop) in that square. The objective is to maneuver the skateboard to reach the South East corner of the grid, marked F. Each contestant is given a map of the grid, which shows where the Drop squares are (marked D), where the Final destination is (marked F), and, for each other square, the directions it is possible to maneuver the skateboard in that square. The contestant draws lots to determine which of the squares on the boundaries of the grid on the North or the West of the grid (the top or the left in the diagram) he or she should start in. Then, using a map of the grid, he or she needs to try to reach the South East corner destination by maneuvering the skateboard. In some cases, it is impossible to reach the destination. For example, in the diagram above, if one starts at the North East corner (top right in the diagram), the only way is to go is South, until the Drop square is reached (three squares South), and the contestant is stuck there. A contestant asks you to figure out the number of squares at the North or West boundary (top or left boundary in the map) from which it is feasible to reach the destination. Constraints $\text { i. } \quad 5<=\mathrm{N}<=50$ Input Format					

	The first line of the input is a positive integer N, which is the number of squares in each side of the grid. The next N lines have a N strings of characters representing the contents of the map for that corresponding row. Each string may be F, representing the Final destination, D, representing a drop square, or a set of up to three of the possible four directions (N,E,S,W) in some random order. These represent the directions in which the contestant can maneuver the skateboard when in that square. Output The output is one line with the number of North or West border squares from which there is a safe way to maneuver the skateboard to the final destination. Explanation Example 1 Input 6 ES,ES,SE,ES,ES,S SE,ES,SE,ES,ES,S ES,ES,SE,ES,SE,S ES,SE,ES,SE,E,D SE,ES,D,WSE,NES,NS E,E,NE,E,E,F Output 9
$\mathbf{6 .}$	Chakravyuha Problem Description During the battle of Mahabharat, when Arjuna was far away in the battlefield, Guru Drona made a Chakravyuha formation of the Kaurava army to capture YudhisthirMaharaj. Abhimanyu, young son of Arjuna was the only one amongst the remaining Pandava army who knew how to crack the Chakravyuha. He took it upon himself to take the battle to the enemies. Abhimanyu knew how to get power points when cracking the Chakravyuha. So great was his prowess that rest of the Pandava army could not keep pace with his advances. Worried at the rest of the army falling behind, YudhisthirMaharaj needs your help to track of Abhimanyu's advances. Write a program that tracks how many power points Abhimanyu has collected and also uncover his trail A Chakravyuha is a wheel-like formation. Pictorially it is depicted as below

	Fig 1. Chakravyuha A Chakravyuha has a very well-defined co-ordinate system. Each point on the co-ordinate system is manned by a certain unit of the army. The Commander-In-Chief is always located at the centre of the army to better co-ordinate his forces. The only way to crack the Chakravyuha is to defeat the units in sequential order. A Sequential order of units differs structurally based on the radius of the Chakra. The radius can be thought of as length or breadth of the matrix depicted above. The structure i.e. placement of units in sequential order is as shown below
	1 2 3 4 5 16 17 18 19 6 15 24 25 20 7 14 23 22 21 8 13 12 11 10 9 Fig 2. Army unit placements in Chakravyuha of size 5 The entry point of the Chakravyuha is always at the $(0,0)$ co-ordinate of the matrix above. This is where the 1 st army unit guards. From $(0,0)$ i.e. 1 st unit Abhimanyu has to march towards the center at $(2,2)$ where the 25 th i.e. the last of the enemy army unit guards. Remember that he has to proceed by destroying the units in sequential fashion. After destroying the first unit, Abhimanyu gets a power point. Thereafter, he gets one after destroying army units which are multiples of 11 . You should also be a in a position to tell YudhisthirMaharaj the location at which Abhimanyu collected his power points. Input Format: First line of input will be length as well as breadth of the army units, say N Output Format: - Print NxN matrix depicting the placement of army units, with unit numbers delimited by ($\backslash t$) Tab character - Print Total power points collected - Print coordinates of power points collected in sequential fashion (one per

	line)• Constraints: $0<\mathrm{N}<=100$Sample Input and Output		
	$\begin{array}{\|l} \hline \text { S. } \\ \text { NO. } \end{array}$	Input	Output
	1	2	$\begin{array}{\|l\|} \hline 1 \\ 4 \\ 4 \\ \text { Total Power points }: 1 \\ (0,0) \\ \hline \end{array}$
	2	5	1 2 3 4 5 16 17 18 19 6 15 24 25 20 7 14 23 22 21 8 13 12 11 10 9 Total Power points : 3 $(0,0)$ $(4,2)$ $(3,2)$

7. Exam Efficiency

Problem Description
In an examination with multiple choice questions, the following is the exam question pattern.

- X1 number of One mark questions, having negative score of -1 for answering wrong
- X2 number of Two mark questions, having negative score of -1 and -2 for one or both options wrong
- X3 number of Three mark questions, having negative score of $-1,-2$ and -3 for one, two or all three options wrong
- Score Required to Pass the exam : Y
- For 1,2 and 3 mark questions, 1,2 and 3 options must be selected. Simply put, once has to attempt to answer all questions against all options.
Identify the minimum accuracy rate required for each type of question to crack the exam. Calculations must be done up to 11 precision and printing up to 2 digit precision with ceil value

Input Format:

First line contains number of one mark questions denoted by X 1 ,
Second line contains number of two mark questions denoted by X2
Third line contains number of three mark questions denoted by X3
Fourth line contains number of marks required to pass the exam denoted by Y.

Output Format:

	Minimum Accuracy rate required for one mark question is 80% Minimum Accuracy rate required for Two mark question is 83.33% Minimum Accuracy rate required for Three mark question is 90% Note: - If the mark required to pass the exam can be achieved by attempting without attempting any particular type of question then show message similar to, One mark question need not be attempted, so no minimum accuracy rate applicable Sample Input and Output			
	$\begin{array}{\|l} \hline \text { S.N } \\ \text { o. } \end{array}$	$\begin{aligned} & \text { Inp } \\ & \text { ut } \end{aligned}$	Output	Explanation
	1	$\begin{aligned} & \hline 20 \\ & 30 \\ & 30 \\ & 120 \end{aligned}$	One mark questions need not be attempted, so no minimum accuracy rate applicable. Minimum Accuracy rate required for Two mark question is 58.33% Minimum Accuracy rate required for Three mark question is 72.23%	If one got full marks in two marks question and three marks question then total accuracy can be 0 in one mark question In same way it will be done for two marks and three marks question
	2	$\begin{array}{\|l\|} \hline 20 \\ 30 \\ 30 \\ 170 \\ \hline \end{array}$	Minimum Accuracy rate required for one mark question is 100% Minimum Accuracy rate required for Two mark question is 100% Minimum Accuracy rate required for Three mark question is 100%	If one got full marks in two marks question and three marks question then total accuracy should be 100% in one mark question to pass the exam. In same way it will be done for two marks and three marks question
8.	Calcu Probl Calcul Comp Anniv The E Increm April) get Tw (Finan Rate of Rate o From From The C	late S em D ate th any P ersary Emplo are co wo Inc cial Y f Inte 4th Y 8th Y ompa	alary and PF escription he Final Salary \& Final Accumulated vt. Ltd. The Company gives two Incre Increment) to an Employee in a Partic yee must have Completed 1 Year The Employee who are joining in the onsidered as the Luckiest Employee's, rements ear Increment \& Anniversary Increme rest for the Financial Year Increment = rest for the Anniversary Increment $=12$ ear, the Financial Year Increment will ear, the Financial Year Increment will ny is giving special Increment for the E	PF of an Employee working ments (i.e. Financial Year Incre ular Year. be Eligible for the Financia month of Financial Year Chan ecause after completion of 1 Ye t). 11\%. \%. e revised to 9%. e revised to 6%. mployee who have completed 4

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

	v. Number of matches in a day has following constraints a. The match pattern that needs to be followed is - - Day 1 has two matches and Day 2 has one match, - Day 3 has two matches and Day 4 has one match and so on b. There can never be 3 or more matches in a day vi. Gap between two successive matches of a team cannot exceed floor(N/2) days where floor is the mathematical function floor() vii. Derby Matches (any one) a. At least half of the derby matches should be on weekend b. At least half of the weekend matches should be derby matches Your task is to generate a schedule abiding to above rules. Input Format: First line contains number of teams (N). Next line contains state ID of teams, delimited by space Output Format: Match format: Ta-vs-Tb where Ta is the home team with id a and Tb is the away team with id b . For each day print the match(es) in following format:- Two matches:- "\#D Ta-vs-Tb Tm-vs-Tn" One match:- "\#D Tx-vs-Ty" where D is the day id and $[\mathrm{a}, \mathrm{b}, \mathrm{m}, \mathrm{n}, \mathrm{x}, \mathrm{y}]$ are team ids. Constraints: i. $\quad 8<=\mathrm{N}<=100$
	Note : - Team ids are unique and have value between 1 to N - Day id starts with 1 - Every 6th and 7th day are weekends - Derby is a football match between two teams from the same state Sample Input and Output
	S.No. Input Output
	1 8 \#1 T1-vs-T6 T3-vs-T5 \#2 T7-vs-T4 $\# 3 \ldots$ and so on
	Note: - There can be multiple correct answers for the same test cases. For better understanding of test case refer this PDF. This PDF contains one of the correct answer for a test case. Explanation:

	There are 8 teams with following information: -										
		Team ID	1	2	3	4	5	6	7	8	
		State ID	1	2	5	4	3	1	6	6	
10.	Longest Problem Given an possible Input Fo Output F Output sh Constrai Sample I	t Possible m Descrip an MxN m route fro Format: $\begin{array}{cc}\text { i. } & \begin{array}{l}\text { Fi } \\ \mathrm{M}\end{array} \\ \text { ii. } & \begin{array}{l}\text { Se } \\ \\ \text { iii. } \\ \text { will }\end{array} \\ \text { iv. } & \text { N }\end{array}$ Format: should dis aints: i. Th ii. A iii. A iv. Th v. Th vi. If hu Input an		a fe to p tain of r cont one 1 co 1 co ngth on ce only s. with MxN mn tion cos		the deli nd of h in th sta stop st r ano rtic acen not the 0 ble	rom ill ath s. ite x 1. urce	A unit ot ute ts ina	e c here col lin x. int ted ot ra ver	longe numb ach lin he ma . t of from ith	
	S. No.	Input	$\begin{aligned} & \hline \text { Outpu } \\ & \mathbf{t} \end{aligned}$								
	1	310 3 12 15 18 00 17	24	He and 31 3 12 15 18 00 17 $(->$	atrix (8) w of posi posi unt	be arti es f of B So				le at (1,7)	$\text { , } 1,5$ nger

				than this one is possible in this matrix.
	2	2	2	-1
	1		No path is possible in this $2 * 2$ matrix so answer is -1	
		0		
		1		
0	0			

11. Min Product array

Problem Description
The task is to find the minimum sum of Products of two arrays of the same size, given that k modifications are allowed on the first array. In each modification, one array element of the first array can either be increased or decreased by 2.
Note- the product sum is Summation ($\mathrm{A}[\mathrm{i}] * \mathrm{~B}[\mathrm{i}]$) for all i from 1 to n where n is the size of both arrays

Input Format:

i. First line of the input contains n and k delimited by whitespace
ii. Second line contains the Array A (modifiable array) with its values delimited by spaces
iii. Third line contains the Array B (non-modifiable array) with its values delimited by spaces

Output Format:

Output the minimum sum of products of the two arrays
Constraints:

$$
\begin{array}{rlrl}
\text { i. } & & 1 \leq \mathrm{N} \leq 10^{\wedge} 5 \\
\text { ii. } & & 0 \leq|\mathrm{A}[\mathrm{i}]|,|\mathrm{B}[\mathrm{i}]| \leq 10^{\wedge} 5 \\
\text { iii. } & 0 \leq \mathrm{K} \leq 10^{\wedge} 9
\end{array}
$$

Sample Input and Output

S.No.	Input	Output
1	35	-31
	12-3	
	-2 3-5	
2	53	25
	23454	
	34232	

Explanation for sample 1:

Here total numbers are 3 and total modifications allowed are 5 . So we modified A[2], which is -3 and increased it by 10 (as 5 modifications are allowed). Now final sum will be
$(1 *-2)+(2 * 3)+(7 *-5)$
$-2+6-35$
-31
-31 is final answer.

	Explanation for sample 2: Here total numbers are 5 and total modifications allowed are 3 . So we modified $\mathrm{A}[1]$, which is 3 and decreased it by 6 (as 3 modifications are allowed). Now final sum will be $\begin{aligned} & (2 * 3)+(-3 * 4)+(4 * 2)+(5 * 3)+(4 * 2) \\ & 6-12+8+15+8 \\ & 25 \end{aligned}$ 25 is final answer.			
12.	Consecutive Prime Sum Problem Description Some prime numbers can be expressed as a sum of other consecutive prime numbers. For example, $5=2+3,17=2+3+5+7,41=2+3+5+7+11+13$. Your task is to find out how many prime numbers which satisfy this property are present in the range 3 to N subject to a constraint that summation should always start with number 2. Write code to find out the number of prime numbers that satisfy the above-mentioned property in a given range.			
	S. No. 1	Inp ut	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Outpu } \\ \text { t } \end{array} \\ \hline 2 \\ \hline \end{array}$	Comment $\begin{array}{l}\text { (Below 20, there are } 2 \text { such members: } 5 \text { and 17) } \\ \begin{array}{l}\text { (}\end{array} \mathrm{2+3} \\ 17=2+3+5+7\end{array}$
	2	15	1	
	Input Form First line con Output Form Print the tota Constraints: $2<\mathrm{N}<=12,00$	ins a t: umbe ,000,0	mber N of all 0	prime numbers which are less than or equal to N .
13.	kth largest f Problem De A positive in by d , the rem 3, 4, 6, 12. E two positive Input Form The input is Output Form The kth high Constraints:	tor of riptio ger d nder ry pos tegers omma t: facto	said to tained is ive integ N and k , separated of N. If	a factor of another positive integer N if when N is divided zero. For example, for number 12, there are 6 factors 1,2 , er k has at least two factors, 1 and the number k itself.Given rite a program to print the kth largest factor of N . list of positive integer pairs (N, k) N does not have k factors, the output should be 1 .

	$1<\mathrm{N}<10000000000.1<\mathrm{k}<600$. You can assume that N will have no prime factors which are larger than 13. Example 1 Input: 12,3 Output: 4 Explanation: N is $12, \mathrm{k}$ is 3 . The factors of 12 are $(1,2,3,4,6,12)$. The highest factor is 12 and the third largest factor is 4 . The output must be 4
14.	Coins Distribution Question (or Coins Required Question) Problem Description Find the minimum number of coins required to form any value between 1 to N , both inclusive. Cumulative value of coins should not exceed N . Coin denominations are 1 Rupee, 2 Rupee and 5 Rupee. Let's understand the problem using the following example. Consider the value of N is 13 , then the minimum number of coins required to formulate any value between 1 and 13 , is 6 . One 5 Rupee, three 2 Rupee and two 1 Rupee coins are required to realize any value between 1 and 13. Hence this is the answer. However, if one takes two 5 Rupee coins, one 2 rupee coins and two 1 rupee coins, then to all values between 1 and 13 are achieved. But since the cumulative value of all coins equals 14 , i.e., exceeds 13 , this is not the answer. Input Format A single integer value Output Format Four Space separated Integer Values 1st - Total Number of coins 2nd - number of 5 Rupee coins. 3 rd - number of 2 Rupee coins. 4th - number of 1 Rupee coins. Constraints $0<\mathrm{n}<1000$ Sample Input: 13 Sample Output: 6132
S. NO.	Debugging Experiments
1.	Write error/output in the following code.


	```# abc.py deffunc(n): return n+10 func('Hello')```
2.	```Write the output of the following code. if not a or b: print 1 elif not a or not b and c: print 2 elif not a or b or not b and a: print } else: print 4```
3.	Write error/output in the following code. ```count = 1 defdoThis(): global count for i in (1, 2, 3): count += 1 doThis() print count```
4.	```Write the output of the following code. check1 = ['Learn', 'Quiz', 'Practice', 'Contribute'] check2 \(=\) check1 check3 \(=\) check1[:] check2[0] = 'Code' check3[1] = 'Mcq' count \(=0\) for c in (check1, check2, check3): if \(c[0]==\) 'Code': count \(+=1\) if \(\mathrm{c}[1]==\) 'Mcq': count \(+=10\)```


	print count
5.	What is the output of the following program? $\mathrm{D}=\operatorname{dict}()$   for $x$ in enumerate(range(2)): $\begin{aligned} & \mathrm{D}[\mathrm{x}[0]]=\mathrm{x}[1] \\ & \mathrm{D}[\mathrm{x}[1]+7]=\mathrm{x}[0] \end{aligned}$   print(D)
6.	What is the output/error in the following program? $\begin{aligned} & \mathrm{D}=\left\{1: 1,2: '^{\prime}, ~ ' 1 ': 1, ~ ' 2 ': 3\right\} \\ & \mathrm{D}[' 1 ']=2 \\ & \operatorname{print}(\mathrm{D}[\mathrm{D}[\mathrm{D}[\operatorname{str}(\mathrm{D}[1])]]]) \end{aligned}$
7.	What is the output/error in the following program? $\begin{aligned} & \mathrm{D}=\left\{1:\left\{\mathrm{A}^{\prime}:\{1: \text { "A" }\}, 2: \text { "B" }\right\}, 3: " \mathrm{C} ",\right. \text { 'B' : "D", "D": 'E'\} } \\ & \operatorname{print(D[D[D[1][2]]],\text {end}="~")} \\ & \operatorname{print(D[D[1]["A"][2]])} \end{aligned}$
8.	What is the output/error in the following program? ```D = dict() for i in range (3): for j in range(2): D[i] = j print(D)```
9.	What is the output/error in the following program? $\begin{aligned} & \mathrm{x}=[\text { 'ab', 'cd' }] \\ & \text { for i in } \mathrm{x}: \\ & \mathrm{x} \text {.append(i.upper()) } \\ & \operatorname{print}(\mathrm{x}) \\ & \hline \end{aligned}$
10.	What is the output/error in the following program? ```i=1 while True: if i%3 == 0: break print(i) i}+=```


B. TECH FIRST YEAR			
Course Code	AASL0151	L T P	Credit


Course Title	Professional Communication Lab	$\mathbf{0}$ 0 2	$\mathbf{1}$
Suggested list of Experiment			
Sr. No.	Name of Experiment		
1	Extempore speech\& Jam Sessions (4 hrs)		
$\mathbf{2}$	Group Discussion (4 hrs)		
$\mathbf{3}$	Presentations (Individual and group) (4 hrs)		
$\mathbf{4}$	Listening Practice (2 hrs)		
$\mathbf{5}$	News/ Book Review (Presentation based) (4 hrs)		
Lab Course Outcome:			
At the end of the course students will be able to -			
CO 1	Learn to use English language for communicating ideas.		
CO 2	Develop interpersonal skills and leadership abilities.		
CO 3	Practice their public speaking skills and gain confidence in it.		
CO 4	Realize the importance of analytical listening during communication.		
CO 5	Apply critical thinking skills in interpreting texts and discourses.		



L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.


## B. TECH. FIRST YEAR

Course Code	AAS0203	L	T	P	Credit

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

Course Title	ENGINEERING MATHEMATICS-II	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{4}$

Course objective:The objective of this course is to familiarize the engineering students with techniques of solving Ordinary Differential Equations, Fourier series expansion, Laplace Transform and vector calculus and its application in real world. It aims to equip the students with adequate knowledge of mathematics that will enable them in formulating problems and solving problems analytically.

Pre-requisites:Knowledge of Engineering Mathematics $-I$ and Mathematics upto $12^{\text {th }}$ standard.

## Course Contents / Syllabus

UNIT-I	Ordinary Differential Equation of Higher Order

10 hours
Linear differential equation of nth order with constant coefficients, Cauchy-Euler equation, Simultaneous lineardifferential equations, Second order linear differential equations with variable coefficients, Solution by changing independent variable, Reduction of order, Normal form, Method of variation of parameters, Series solutions (Frobenius Method).

UNIT-II	Sequences and series	8 hours

Definition of Sequence and series with examples, Convergence of sequence and series, Tests for convergence of series, (Ratio test, D' Alembert's test, Raabe's test). Fourier series, Half range Fourier sine and cosine series.

UNIT-III	Laplace Transform	8 hours

Laplace transform, Existence theorem, Laplace transforms of derivatives and integrals, Initial and final value theorems, Unit step function, Dirac- delta function, Laplace transform of periodic function, Inverse Laplace transform, Convolution theorem, Application to solve simple linear and simultaneous differential equations.

UNIT-IV	Vector Calculus	8 hours

Vector differentiation: Gradient, Curl and Divergence and their Physical interpretation, Directional derivatives, Tangent and Normal planes.
Vector Integration: Line integral, Surface integral, Volume integral, Gauss's Divergence Theorem, Green's theorem, Stoke's theorem ( without proof) and their applications.

UNIT-V	Aptitude-II	8 hours

Ratio, Proportion \& Partnership, Problem of ages, Allegation \& Mixture, Direction, Blood relation, Simple \& Compound interest

Course outcome: After completion of this course students are able to:

CO 1	Apply the concept of differentiation to solve differential equations.	$\mathrm{K}_{3}$
CO 2	Apply the concept of convergence of sequence and series to evaluate   Fourier series	$\mathrm{K}_{3}$
CO 3	Apply the Laplace transform to solve ordinary differential equations	$\mathrm{K}_{3}$
CO 4	Apply the concept of vector calculus to evaluate line, surface and volume	$\mathrm{K}_{3}$



L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

	https://www.youtube.com/watch?v=Clwkvn77QrE\&t=10s   https://www.youtube.com/watch?v=LGxE yZYigl
Unit 3	https://youtu.be/nmp-5tSp-UY   https://youtu.be/6ANT4eD6fII   https://youtu.be/c9NibpoQjDk   https://www.youtube.com/playlist?list=PLNOGIXC4kCBT8G5pWCrH71hmwaAvwsBY3
Unit 4	https://voutu.be/IwgqKjA6wko   https://youtu.be/d4OyeuRTZNA   https://voutu.be/i36IJKSJMQk   https://youtu.be/DhwMOrl609g   https://youtu.be/DhwMOrl6Q9g   https://youtu.be/fsMouTxce A   https://youtu.be/va5olnzDCGc   https://youtu.be/2SB3IVCwW1w   https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable-   functions/line-integrals-vectors/v/line-integra   https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable-   functions/3d-flux/v/vector-representation-of-a-su   http://nucinkis-lab.cc.ic.ac.uk/HELM/workbooks/workbook 29/29 2 surfac   https://www.youtube.com/watch?v=Mb6Yb-SGqio   https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and-   stokes-theorem/stokes-theorem/v/stokes-theorem-intuition   https://www.youtube.com/watch?v=eSqznPrtzS4
Unit 5	https://www.GovernmentAdda.com


B. TECH FIRST YEAR			
Course Code	ACSE0203	L T P	Credits
Course Title	DESIGN THINKING I	$\mathbf{3} \mathbf{1} \mathbf{0}$	$\mathbf{4}$
Course Objectives:			
The objective of this course is to familiarize students with design thinking process as a tool for			

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.
breakthrough innovation. It aims to equip students with design thinking skills and ignite the minds to create innovative ideas, develop solutions for real-time problems.

Pre-requisites: None

## Course Contents / Syllabus

UNIT-I	Introduction	8 HOURS

Introduction to design thinking, traditional problem solving versus design thinking, history of design thinking, wicked problems. Innovation and creativity, the role of innovation and creativity in organizations, creativity in teams and their environments, design mindset. Introduction to elements and principles of design, 13 Musical Notes for Design Mindset, Examples of Great Design, Design Approaches across the world

UNIT-II	Ethical Values and Empathy	8 HOURS

Understanding humans as a combination of I (self) and body, basic physical needs up to actualization, prosperity, the gap between desires and actualization. Understanding culture in family, society, institution, startup, socialization process. Ethical behavior: effects on self, society, understanding core values and feelings, negative sentiments and how to overcome them, definite human conduct: universal human goal, developing human consciousness in values, policy, and character. Understand stakeholders, techniques to empathize, identify key user problems. Empathy tools- Interviews, empathy maps, emotional mapping, immersion and observations, customer journey maps, and brainstorming, Classifying insights after Observations, Classifying Stakeholders, Do's \&Don'ts for Brainstorming, Individual activity- 'Moccasin walk'

UNIT-III	Problem Statement and Ideation	10 HOURS

Defining the problem statement, creating personas, Point of View (POV) statements. Researchidentifying drivers, information gathering, target groups, samples, and feedbacks. Idea Generationbasic design directions, Themes of Thinking, inspirations and references, brainstorming, inclusion, sketching and presenting ideas, idea evaluation, double diamond approach, analyze - four W's, 5 why's, "How Might We",Defining the problem using Ice-Cream Sticks, Metaphor \& Random Association Technique, Mind-Map,ideation activity games - six thinking hats, million-dollar idea, introduction to visual collaboration and brainstorming tools - Mural, JamBoard.

## UNIT-IV $\quad$ Critical Thinking

6 HOURS
Fundamental concepts of critical thinking, the difference between critical and ordinary thinking, characteristics of critical thinkers, critical thinking skills- linking ideas, structuring arguments, recognizing incongruences, five pillars of critical thinking, argumentation versus rhetoric, cognitive bias, tribalism, and politics. Case study on applying critical thinking on different scenarios.

\section*{| UNIT-V | Logic and Argumentation | 8 HOURS |
| :--- | :--- | :--- |}

The argument, claim, and statement, identifying premises and conclusion, truth and logic conditions, valid/invalid arguments, strong/weak arguments, deductive argument, argument diagrams, logical reasoning, scientific reasoning, logical fallacies, propositional logic, probability, and judgment,

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

obstacles to critical thinking. Group activity/role plays on evaluating arguments		
Course outcome: After completion of this course, students will be able to		
CO 1	Develop a strong understanding of the design process and apply it in a variety of business settings	K2,K3
CO 2	Analyze self, culture, teamwork to work in a multidisciplinary environment and exhibit empathetic behavior	K3
CO 3	Formulate specific problem statements of real time issues and generate innovative ideasusing design tools	K3,K6
CO 4	Apply critical thinking skills in order to arrive at the root cause from a set of likely causes	K3
CO 5	Demonstrate an enhanced ability to apply design thinking skills for evaluation of claims and arguments	K3,K4
Textbook		
1. Arun Jain, UnMukt : Science \& Art of Design Thinking, 2020, Polaris		
2. Jeanne Liedta, Andrew King and Kevin Benett, Solving Problems with Design Thinking Ten Stories of What Works,2013,Columbia Business School Publishing		
3. RR Gaur, R Sangal, G P Bagaria, A Foundation Course in Human Values and Professional Ethics, First Edition, 2009, Excel Books: New Delhi		
Reference Books		
1. Vijay Kumar, 101 Design Methods: A Structured Approach for Driving Innovation in Your Organization, 2013, John Wiley and Sons Inc, New Jersey		
2. BP Banerjee, Foundations of Ethics and Management, 2005, Excel Books		
3. Gavin Ambrose and Paul Harris, Basics Design 08: Design Thinking, 2010, AVA Publishing SA		
4. Roger L. Martin, Design of Business: Why Design Thinking is the Next Competitive Advantage, 2009, Harvard Business Press, Boston MA		
NPTEL/ YouTube/ Web Link		
Unit I   https://nptel.ac.in/courses/110/106/110106124/   https://nptel.ac.in/courses/109/104/109104109/   https://designthinking.ideo.com/   https://blog.hypeinnovation.com/an-introduction-to-design-thinking-for-innovation-managers   https://www.creativityatwork.com/design-thinking-strategy-for-innovation/   https://www.youtube.com/watch?v=GFffb2H-gK0		
Unit II   https://aktu.ac.in/hvpe/   http://aktu.uhv.org.in/   https://nptel.ac.in/courses/110/106/110106124/   https://swayam.gov.in/nd1_noc19 mg60/preview		
Unit III   https://nptel.ac.in/courses/110/106/110106124/		

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

https://swayam.gov.in/nd1_noc19 mg60/preview
https://www.udemy.com/course/design-thinking-for-beginners/
https://www.designthinking-methods.com/en/
https://www.interaction-design.org/literature/article/personas-why-and-how-you-should-use-them
Unit IV   https://www.forbes.com/sites/sap/2016/08/25/innovation-with-design-thinking-demands-critical-   thinking/\#340511486908   https://www.criticalthinking.org/pages/defining-critical-thinking/766   Unit V   https://www.udemy.com/course/critical-thinker-academy/   https://swayam.gov.in/nd2 aic19 ma06/preview$\$ .$


B.TECH FIRST YEAR							
Course Code	AAS0201A	$\mathbf{L}$	T	P	Credit		
Course Title	ENGINEERING PHYSICS	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{4}$		
Course objective:							
1	To provide the knowledge of Relativistic Mechanics and their uses to engineering						

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

	applications.	
2	To provide the knowledge of Quantum Mechanics and to explore possible engineering   utilization.	
3	To provide the knowledge of interference and diffraction.	
4	To provide the knowledge of the phenomenon of semiconductors and its uses to   engineering applications.	To provide the basic knowledge of Optical Fiber and Laser which is necessary to   understand the working of modern engineering tools and techniques.
5		

Pre-requisites: Newton's laws of motions, scalar and vectors, electricity and magnetism, basic laws of optics.

## Course Contents / Syllabus

UNIT-I	Relativistic Mechanics	$\mathbf{8}$ hours

Frame of reference, Inertial \& non-inertial frames, Galilean transformations, Michelson Morley experiment, Postulates of special theory of relativity, Lorentz transformations, Length contraction, Time dilation, Velocity addition theorem, Variation of mass with velocity, Einstein's mass energy relation, Relativistic relation between energy and momentum, Massless particle.
Some engineering applications(qualitative): Global positioning system (GPS), Application to Satellites.

UNIT-II	Quantum Mechanics	$\mathbf{8}$ hours

Introduction to wave-particle duality, de Broglie matter waves, Phase and group velocities, Heisenberg's uncertainty principle and its applications, Wave function characteristics and significance, Time-dependent and time- independent Schrödinger's wave equations, Particle in one-dimensional rigid box, Theory of Quantum excitation of the Higgs field (Higgs Boson or GOD particle)(qualitative).

UNIT-III	Wave Optics	$\mathbf{1 0}$ hours

Coherent sources, Interference in uniform and wedge shaped thin films, Necessity of extended sources, Newton's Rings and its applications,Fraunhofer diffraction at single slit and at double slit, absent spectra, Diffraction grating, grating spectra, Rayleigh's criterion of resolution, Resolving power of grating, Optical filters.

UNIT-IV	Semiconductor Physics and Information Storage	6 hours

(a) Introduction to the concept of electrical conductivity, conductivity of conductors and semiconductors, Fermi-Dirac probability distribution function, Position of Fermi level in intrinsic semiconductors and extrinsic semiconductors, variation of Fermi level with temperature (qualitative), Photovoltaic effect, working of a solar cell on the basis of band diagrams and Applications.
(b) Basics of magnetic, and semiconductor memories

UNIT-V	Fiber Optics \& Laser	$\mathbf{8}$ hours

Fiber Optics: Introduction to fiber optics, Acceptance angle, Numerical aperture, Normalized frequency, Classification of fiber, Attenuation and Dispersion in optical fibers.
Laser: Absorption of radiation, Spontaneous and stimulated emission of radiation, Einstein's coefficients, Population inversion, Ruby Laser, He-Ne Laser.
Recent applicationsof optical fibersandLaser(Qualitative):Laser-guided UAV (Drone).

Course outcome: After completion of this course students will be able to:		
CO 1	Solve the relativistic mechanics problems	K1,K2,K3
CO 2	Apply the concept of quantum mechanics	K1,K2,K3
CO 3	Apply the laws of optics and their application in various processes	K1,K2,K3
CO 4	Define the laws of semiconductors.	K1,K2
CO 5	Explain the working of modern engineering tools and techniques of optical fiber and laser.	K1,K2
Text books		
1. A. Beiser, Concepts of Modern Physics (McGraw Hill)		
2. Brijlal\&Subramanian,Optics (S. Chand )		
3. Neeraj Mehta,Applied Physics for Engineers (PHI Learning, New)		
Reference Books		
1. Robert Resnick,Introductionto Special Theory of Relativity (Wiley)		
2. Katiyar and Pandey,Engineering Physics: Theory and Practical (Wiley India)		
3. H. K. Malik and A. K. Singh, Engineering Physics- (McGrawHill)		
4. J.W. Jewett, Jr. and R. A. Serway, Physics for Scientists and Engineers with Modern Physics,7th Edn. (CENGAGE Learning)		
5. C. Kittel, Solid State Physics, 7th Edn. (Wiley Eastern)		
6. V. Raghavan, Materials Science and Engineering ( Prentice Hall, India)		
7. S.O. Pillai, Solid State Physics,5th Edn (New Age International)		
8. R. Booker and E. Boysen , Nanotechnology (Wiley Publ.)		
9. K.Rajagopal, Engineering Physics, 2nd Edn. (PHI Learning)		
10. G. Aruldhas, Engineering Physics (PHI Learning)		
11. S.D. Jain and G.S. Sahasrabudhe, Engineering Physics (Universities Press)		
12. L. F. Bates, Modern Magnetism, (Cambridge Univ. Press)		
13. F.T.S.Yu, X.-Y.Yang, Introduction to Optical Engineering (Cambridge Univ.Press)		
14. G.Keiser, Optical Communications Essentials (Tata McGrawHill)		


$\|$B. TECH FIRST YEAR        Course Code ACSE0202 L T P Credit   Course Title Problem solving using Advanced Python $\mathbf{3}$ $\mathbf{1}$ $\mathbf{0}$ $\mathbf{4}$   Course objective:The objective of the course is to make its students able        1 To learn the Object Oriented Concepts in Python       2 To learn the concept of reusability through inheritance and polymorphism
L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End
Semester Exam., PE: Practical End Semester Exam.


3	To impart the knowledge of functional programming	
4	To learn the concepts of designing graphical user interfaces	
5	To explore the knowledge of standard Python libraries	
Pre-requisites:Students are expected to have basic knowledge of programming concepts of python programming.		
Course Contents / Syllabus		
UN	Classes and Obj	8
Introduction: Python Classes and objects, User-Defined Classes, Encapsulation, Data hiding, Class Variables and Instance Variables, Instance methods, Class method, static methods, constructor in python, parametrized constructor, Magic Methods in python, Object as an argument, Instances as Return Values, namespaces		
UNIT-II	Object Oriented Concep	8 hours
Introduction to the Specialization, Inheritance, Types of inheritance, Invoking the Parent Class's Method, Method overriding, abstract class, MRO and super ( ), Polymorphism Introspection: Introspecting types, Introspecting objects, Introspecting scopes, inspect modules, introspect tools		
UNIT	Functional Pr	8 hours
Map, filter, Reduce, Comprehensions, Immutability, Closures and Decorators, generators, Co-routines, iterators, Declarative programming		
UNIT-IV	GUI Programming	8 hours
Ipywidgets Package, Numeric Widgets, Boolean Widgets, Selection Widgets, String Widgets, Date Picker, Color Picker, Container Widgets, Creating a GUI Application, Tkinter, button, canvas.		
UNIT-V	Libraries in Python	8 hours
NumPy: Basic Operation, Indexing, slicing and Iterating, multidimensional arrays, NumPy Data types, Reading and writing data on Files,Pandas : Series and Data Frames, Grouping, aggregation, Merge Data Frames, Generate summary tables, Group data into logical pieces, Manipulation of data. SciPy: Introduction to SciPy, Create function, modules of SciPy. Matplotlib: Scatter plot, Bar charts, histogram, Stack charts, Legend title Style, Figures and subplots, Plotting function in pandas, Labelling and arranging figures, Save plots. Seaborn: style function, color palettes, distribution plots, category plot, regression plot.		
Course outcome: At the end of course, the student will be able to		
CO 1	Define classes and create instances in python	$\mathrm{K}_{1}$, K
CO 2	Implement concept of inheritance and polymorphism using python	$\mathrm{K}_{3}$
CO 3	Implement functional programming in python	$\mathrm{K}_{2}$
CO 4	Create GUI based Python application	$\mathrm{K}_{3}$
CO 5	Applythe concept of Python libraries to solve real world problems	$\mathrm{K}_{3}, \mathrm{~K}_{6}$

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

## Text books

(1) Magnus Lie Hetland, "Beginning Python-From Novice to Professional"-Third Edition, Apress
(2) Peter Morgan, Data Analysis from Scratch with Python, AI Sciences
(3) Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O‘Reilly Publishers, 2016
(4) Miguel Grinberg, Developing Web applications with python, OREILLY

## Reference Books

(1) Dusty Phillips, Python 3 Object-oriented Programming - Second Edition, O’Reilly
(2) Burkhard Meier, Python GUI Programming Cookbook - Third ,Packt
(3) DOUG HELLMANN, THE PYTHON 3 STANDARD LIBRARY BY EXAMPLE, :Pyth 3 Stan Libr Exam _2 (Developer's Library) 1st Edition, Kindle Edition.
(4) Kenneth A. Lambert, -Fundamentals of Python: First Programsll, CENGAGE Learning, 2012.

## E-books\& E-Contents:

(1)https://www.pdfdrive.com/a-python-book-beginning-python-advanced-python-and-python-exercises-e125280.html
(2)https://www.pdfdrive.com/a-python-book-beginning-python-advanced-python-and-pythone9236005.html
(3)https://www.pdfdrive.com/learn-python-in-one-day-and-learn-it-well-python-for-beginners-with-hands-on-project-the-only-book-you-need-to-start-coding-in-python-immediatelye183833259.html
(4)https://www.pdfdrive.com/python-programming-python-programming-for-beginners-python-programming-for-intermediates-d180663309.html
(5)https://www.pdfdrive.com/python-programming-python-programming-for-beginners-python-programming-for-intermediates-d180663309.html
(6) https://realpython.com/tutorials/advanced/

## Reference Links

Unit 1-https://nptel.ac.in/courses/106/106/106106145/
Unit-2-https://www.python-course.eu/python3 inheritance.php
Unit -3 https://realpython.com/courses/functional-programming-python/
Unit-4: https://realpython.com/python-gui-tkinter/
Unit-5: https://nptel.ac.in/courses/106/107/106107220/
https://nptel.ac.in/courses/106/106/106106212/
https://nptel.ac.in/courses/106/105/106105152/
https://www.youtube.com/watch?v=98YeQpmQeH8
https://www.youtube.com/watch?v=u9x4750Gj U
https://www.youtube.com/watch?v=HFW7eA9wUxY
https://www.youtube.com/watch?v=byHcYRpMgl4
https://www.youtube.com/watch?v=9N6a-VLBa2I
L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

https://www.youtube.com/watch?v=Ta1bAMOMFOI
https://www.youtube.com/watch?v=FsAPt 9Bf3U
https://www.youtube.com/watch?v=LwPTfwlry1s
https://www.youtube.com/watch?v=YXPyB4XeYLA
https://www.youtube.com/watch?v=dVr7r7QgLrk\&t=21s
Students may follow Links given below to get certification in course of Advanced python   Link for Certification in Python   https://swayam.gov.in/hd1 noc20 cs36/preview   https://swayam.gov.in/nd1 noc20 cs46/preview


| B.TECH FIRST YEAR(Foreign Language) |  |  |  |
| :--- | :--- | :---: | :---: | :---: |
| Course Code | AASL0202 | $\mathbf{L}$ T P | Credit |
| Course Title | French | $\mathbf{2 0 0}$ | $\mathbf{0 2}$ |
| Course objective: | An introduction to French language and culture - Students will <br> learn to understand and articulate in day to day, real-life |  |  |
| 1 |  |  |  |


	situations.	
2	The course provides a foundation in the four basic skills LSRW   (Listening, Speaking, Reading, and Writing) of language learning.	

## Pre-requisite:

- The student should be able to communicate in English.

Course Contents / Syllabus		
UNIT-I	Introduction to French	7 Hours
$>$ Basic greetings and introductions		
$>$		
$>$ Differences and similarities between English and French alphabets		
$>$ Recognize and spell simple words and phrases in French		
$>$ Commonly used nouns and adjectives		

$>$ Introduce oneself and others
$>$ Identify, speak and understand the days of the week/ months/ seasons/colours
$>$ Speak and understand simple weather expressions
$>$ Understand, ask and answer about date of birth/ important dates and age
$>$ Identify, understand and write numbers from 1-60
$>$ Use the masculine and feminine of regular nouns and adjectives (petit/ grand/ blond/ rouge/ sympa)

UNIT-III	Everyday Common Simple Sentences	
	$\mathbf{7}$ Hours	
$>$ In the city/ naming places and buildings		
$>$ Means of transport / basic directions		
$>$	Listen to, understand, and respond to everyday conversation	
	$>$ Respond to questions about ourselves and family members	
$>$ Use the singular and plural of regular nouns (-s).		

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

$>$ Food, drink, groceries and meal   $>$ Everyday life/ telling time   $>$ Making appointments   $>$ Use definite and indefinite articles.		
UNIT-V	Writing	8 Hours
$>$ Fill in a simple form ( fiched'inscription/ carte d' identité)   $>$ Describe pictures (Speak and Write)   $>$ Write a short text on oneself		
Course outcome   At the end of the course students will be able to		
CO 1	Recognize the basic sounds, letters, numbers, words and phrases of French.	
CO 2	Develop basic French vocabulary	
CO 3	Use simple phrases in real life conversations	
CO 4	Read simple sentences	
CO 5	Write simple sentences and fill in a form	


B.TECH FIRST YEAR (Foreign Language)			
Course Code	AASL0203	LTP	Credit
Course Title	German	200	02
Course objective:			
1	An introduction to German language and culture. Students will learn to understand and articulate in day to day real-life situations.		
2	The course provides a foundation in the four basic skills LSRW (Listening, Speaking, Reading, and Writing) of language learning.		
Pre-requisites:   The student should be able to communicate in basic English.			
Course Contents / Syllabus			
UNIT-I	Introduction to German	5	urs


$>$ Introducing ourselves and others,   $>$ Grammar: W questions,   $>$ personal pronouns,   $>$ simple sentence,   $>$ verb conjugation		
UNIT-II	Vocabulary building	6 Hours
$>$ Vocabulary building - the alphabet,   $>$ hobbies,   $>$ numbers, months, seasons   $>$ Grammar: articles, singular and plural forms		
UNIT-III	Everyday common simple sentences	5 Hours
In the city / naming places and buildings, means of transport, basic directions Grammar: definite and indefinite articles; negation - kein and nicht; imperative		
UNIT-IV	Reading	7 Hours
food, drink, family / groceries and meals   Grammar: the accusative   Everyday life, telling time, making appointments   Grammar: prepositions am, um, von. bis; modal verbs, possessive articles   Leisure activity, celebrations   Grammar: separable verbs, the accusative, past tense of to have and to be		
UNIT-V	Writing	7 Hours
Contacts, filling basic information and forms   Grammar: dative   A short text about oneself.   Grammar: changing prepositions   Professions   Grammar: perfect tense   Clothes Health and the body   Grammar: perfect tense and dative   Grammar: the imperative and modal verbs		
Course outcome:   At the end of the course students will be able to		
CO 1	Understand and be familiar with basic German and	
CO 2	Recognise the foundational vocabulary	
CO 3	Use simple phrases in everyday conversations	
CO 4	Read simple sentences	

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

CO 5	Write simple sentences	
Text books		
1. NETZWERK Deutsch alsFremdsprache A1(Goyal, New Delhi, 2015)		
2. Lagune 1		
3. Schulz-Griesbach: Deutsch alsFremdsprache. Grundstufe in einem Band (for Grammar)		
Online Practice Material		
1. https://www.goethe.de/en/spr/kup/prf/prf/sd1/ueb.html		
2. $\underline{\text { http://www.deutschkurse.passau.de/JM/images/stories/SKRIPTEN/al_skript_gr.pdf }}$		
4. $\underline{\text { https://www.schubert-verlag.de/aufgaben/arbeitsblaetter_al_z/a1_arbeitsblaetter_index_z.htm }}$		


B.TECH FIRST YEAR (Foreign Language)			
Course Code	AASL0204	$\mathbf{L} \mathbf{T} \mathbf{~ P}$	Credit
Course Title	Japanese	$\mathbf{2} \mathbf{0}$ 0	$\mathbf{0 2}$
Course objective:	$\mathbf{1}$	An introduction to Japanese language and culture. Students will   learn to understand and articulate in day to day real-life situations.	
$\mathbf{2}$	The course provides a foundation in the four basic skills LSRW   (Listening, Speaking, Reading, and Writing) of language learning.		
Pre-requisites:			
The student should be able to communicate in basic English.			
The student should be keen to learn the language.			
Course Contents / Syllabus			
UNIT-I	Introduction to Japanese		

Introduction to Japanese alphabet（Hirangana），phonetics and pronunciation．
－Introducing ourselves and others，
－Introduction to Japanese Language
－Types of Japanese scripts－HIRANGANA，KATAKANA，
－Basic pronunciation rules
－Time and numbers－telling and asking the time，counting cardinal numbers，
－Grammar－different types of verbs，nouns－number \＆gender，pronouns，present and simple past tense．

UNIT－II	Vocabulary building	8 Hours
Use simple sentences to answer basic personal questions		

－Expressing gratitude
－Invitations
－Talking about plans
－Holidays
－Hotels \＆restaurants
－Town \＆country
Word order－sentence，question，negative

UNIT－III	Everyday common simple sentences	8 Hours
• Customer and shopkeeper		
• Making a request		
－		
	Home／Relatives／Fruits／Vegetables／Animals	
	Question formation vs．Plural	


UNIT－IV	Reading	8 Hours
• Transportation		
• Week／Month names		
• Shopping		
	Basic Japanese grammar rules－particles：か（ka），は（wa），の（no），と（to），を（o），に   （ni），も（mo），が（ga），や（ya）．      Grammar－Present，Past，Future	
UNIT－V	Writing	$\mathbf{8}$ Hours

- Write short text on oneself

Grammar- Pronouns - subject, object, possessive,
Modal verbs

## Course outcome:

At the end of the course students will be able to

CO1	understand the basics of Japanese Language and its script.	
CO2	recognise the foundational vocabulary.	
CO3	use simple phrases in everyday conversations.	
CO4	read simple sentences.	
C05	write simple sentences	
References:		
	https:///www.youtube.com/watch?v=6p9\|	j0zic\&ab channel=LearnJapanesewithJapanesePod101.com https://books.google.co.in/books?   d=4nHnMa4ZwMC\&newbks=0\&printsec=frontcover\&dqminna+no+nihongo\&hl=en\&source=newbks fb\& redir esc=y\#v=onepage\&q=minna\%20no\%20nihongo\&f=false


B. TECH FIRST YEAR				
Course Code	AAS0251A	L T P	Credit	
Course Title	ENGINEERING PHYSICS LAB	$\mathbf{0}$ 0 2	$\mathbf{1}$	
Suggested list of Experiment				
Sr.   No.	Name of Experiment   (Minimum Ten experiments should be performed)			
1	To determine the wavelength of monochromatic light by Newton's ring.			
$\mathbf{2}$	To determine the focal length of two lenses by nodal slide and to verify the formula for the focal   length of combination of two lenses.			
$\mathbf{3}$	To determine the specific rotation of cane sugar solution using Polarimeter.			

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

4	To determine the wavelength of spectral lines using plane transmission Grating.
5	To determine the specific resistance of a given wire using Carey Foster's bridge.
6	To study the variation of magnetic field along the axis of current carrying - Circular coil and then to estimate the radius of the coil.
7	To verify Stefan's Law by electrical method.
8	To Study the Hall effect and determine the Hall Coefficient, carrier density and mobility of a given semiconductor material using hall effect setup.
9	To determine the energy band gap of a given semiconductor material.
10	To determine the coefficient of viscosity of a liquid.
11	Calibration of a voltmeter using potentiometer.
12	Calibration of a ammeter using potentiometer.
13	To determine E.C.E. of copper using Tangent or Helmholtz galvanometer.
14	To determine the magnetic susceptibility of a ferromagnetic salt $\left(\mathrm{FeCl}_{3}\right)$ by using Quincke's tube method.
15	To study the hysteresis curve and then to estimate the retentively and coercivity of a given ferromagnetic material.
16	To determine the angle of divergence of laser beam using He-Ne Laser.
17	To determine the wavelength of laser using diffraction grating.
18	To determine the numerical aperture of optical fiber.
Lab Course Outcome: After completion of this course students willbeable to:	
CO 1	Apply the practical knowledge of the phenomenon of interference, diffraction and polarization.
CO 2	Understand energy band gap and resistivity.
CO 3	Develop the measurement techniques of magnetism.
CO 4	Analyze the flow of liquids.
Link:	
Unit 1	https://www.youtube.com/watch?v=1zBK1Y4f1XA\&list=PL10WTjZXSIIHKMnU4UCxpPsH-

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

	yAf_n1O6\&index=11
Unit 2	http://nptel.ac.in/ , http://www.mit.edu/
Unit 3	https://www.youtube.com/watch?v=bWTxf5dSUBE , http://ocw.mit.edu/   http://hptel.ac.in/
Unit 4	https://www.youtube.com/watch?v=6vyYRnLvnqI
Unit 5	https://www.youtube.com/watch?v=0GD-18Jqnio,   https://www.youtube.com/watch?v=dQhhcgn8YZo


B. TECH FIRST YEAR			
Lab Code	ACSE0252	L T P	Credit
Lab Title	Problem Solving using Advanced Python Lab	$\mathbf{0} \mathbf{0} 2$	$\mathbf{1}$
Course outcome: At the end of course, the student will be able to			
CO 1	Write programs to create classes and instances in python	$\mathrm{K}_{1}, \mathrm{~K}_{3}$	
CO 2	write programs to Implement concept of inheritance and polymorphism   using python	$\mathrm{K}_{2}, \mathrm{~K}_{3}$	
CO 3	Write programs using functional programming in python	$\mathrm{K}_{4}$	
CO 4	write programs to create GUI based Python application	$\mathrm{K}_{3}, \mathrm{~K}_{4}$	

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

CO 5	Developing real life applications using python libraries to solve real world   problems	$\mathrm{K}_{4}, \mathrm{~K}_{6}$

## List of Experiment :

S.No.	Name of Experiment
	Class and Methods
1	Python program to demonstrate instantiating a class.
2	Python program to demonstrate use of class method and static method
3	Python program to implement constructors.
4	Python program to show that the variables with a value assigned in the class declaration, are class variables and variables inside methods and constructors are instance variables.
5	Python program to create Bank-account class with deposit, withdraw function
	Inheritance
6	Python program to demonstrate single inheritance
7	Python program to demonstrate multilevel inheritance
8	Python program to demonstrate multiple inheritance
9	Python program to demonstrate hierarchical inheritance
10	Python program to demonstrate hybrid inheritance
	Polymorphism
11	Python program to demonstrate in-built polymorphic function
12	Python program to demonstrate user defined polymorphic functions
13	Python program to demonstrate method overriding
	Functional Programming
14	Python program to demonstrate working of map
15	Python program to demonstrate working of filter
16	Python program to demonstrate working of reduce
17	Python program to demonstrate immutable data types
18	Python program to demonstrate Monkey Patching in Python
19	Python program to demonstrate decorators with parameters in python
20	Python program to demonstrate conditional decorators
21	Python program to demonstrate nested decorators
22	Python program to demonstrate chain multiple decorators
23	Python program to demonstrate use of generators
24	Python program to demonstrate working of iterators
25	Write a Python program to create a table and insert some records in that table. Finally selects all rows from the table and display the records.
	GUI Programming
26	Python Program to understand working of various Tkinter widgets
27	Create a Distance-time GUI calculator using Tkinter

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

$\mathbf{2 8}$	Write a NumPy program to calculate the difference between the maximum and the   minimum values of a given array along the second axis.
$\mathbf{2 9}$	Write a Python program to create a 2-D array with ones on the diagonal and zeros   elsewhere. Now convert the NumPy array to a SciPy sparse matrix in CSR format.
$\mathbf{3 0}$	Write a Python program to add, subtract, multiple and divide two Pandas Series.
$\mathbf{3 1}$	Write a program to Create Your Plot using python. Also add and delete axes.
$\mathbf{3 2}$	Write a program to plot data using seaborn and show the plot.


B. TECH FIRST YEAR				
Course Code	AME0252	L T	Credit	
Course Title	Engineering Graphics \& Solid Modelling	0 O	1.5	. 5
Course objective:				
To familiarize the students with the concepts of Engineering Graphics and provide understanding of the drafting, principles, instruments, standards, conventions of drawings, scales, curves etc.				
To impart knowledge about projections of point, lines and planes.				
To make the students able tounderstandorthographic projections of simple solids and their sections and development of curves for lateral surfaces				
To make them capable to prepare engineering drawing using CAD software.				
To make them capable to prepare engineering drawing using CREO software.				
Pre-requisites: Knowledge of basic geometry.				
Course Contents / Syllabus				
UNIT-I	Introduction			hours

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

Introduction to engineering graphics, Convention for Lines and their uses, Symbols for different materials and surface finish, Methods of dimensioning, Scales, Cycloidal curves and involutes. (1 Sheet)

UNIT-II	Projection of points, lines and planes	$\mathbf{6}$ hours
Projection of points, lines and planes. (1 Sheet)	$\mathbf{6}$ hours	
UNIT-III	Projection of solids and Sections of solids and   Development of surfaces	
Orthographic projections of regular solids. Projection of section of regular solids. Development of lateral		


UNIT-IV	Introduction to CAD	9 hours

Introduction to Computer Aided Drawing: Drawing practice using various commands (Array, block, scale, fillet, chamfer, hatch etc.), Absolute coordinate systems, Polar coordinate systems and relative coordinate systems, Drawing practice using dimensioning, Drawing of 2D planes; circle, polygons, ellipse etc, Drawing practice using 3D primitives; Drawing of cone Prism, pyramid etc.; Create solids using extrude, revolve commands, Working drawings of various mechanical systems. (4 Sheets)

UNIT-V	Introduction to CREO	9 hours

Introduction to CREO Parametric, features of CREO, concepts- modeling, parametric, associative, feature based, sketch entities- inference lines, center lines, circle, arc, ellipse, rectangle, slots, polygon, etc, sketch tools- fillet, chamfer, offset, trim, extend, split, mirror, move, copy, rotate, scale, stretch etc. dimensioning (4 Sheets)

## Course outcome: After completion of this course students will be able to

CO 1	Apply the basic principles of engineering graphics to draw various types of   Scales, Cycloidal and involutes curves.	$\mathrm{K}_{1}, \mathrm{~K}_{2}$
CO 2	Draw and develop the projections of points lines and planes.	$\mathrm{K}_{1}, \mathrm{~K}_{2}$
CO 3	Draw orthographic projection of solids and their sections and draw the lateral   surfaces.	$\mathrm{K}_{3}$
CO 4	Apply CAD software to draw 2D and 3D drawing.	$\mathrm{K}_{2}$
CO 5	Apply CREO software to draw 2D and 3D drawing.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$

## Text books

A Textbook of Engineering Drawing- Dr R.K. Dhawan, S.Chand Publication, Revised edition-2015
Engineering Graphics and Design- P.S. Gill, Katson books, Revised edition-2018

## Reference Books

(1) Engineering Drawing - N.D. Bhatt \& V.M. Panchal, 48thedition, 2005- Charotar Publishing House, Gujarat.
(2) Computer Aided Engineering Drawing - S. Trymbaka Murthy, - I.K. International Publishing House Pvt. Ltd., New Delhi, ${ }^{\text {rirevevised edition-2006 }}$

## Video links

## Unit 1

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

	https://www.youtube.com/watch?v=uojN7SOHPBw   https://youtu.be/w2-a_EzO4-Q   https://www.youtube.com/watch?v=n9iQcttWHAo
	Unit 2   https://www.youtube.com/watch? v=fK4h5gM73w8\&list=PLIhUrsYr8yHxEk Jv8yOatnDcr6KYK3j   https://www.youtube.com/watch?v=FtugLo9DMw8\&list=PLIhUrsYr8yHz_FkG5tGWXaNbIxVcibQvV   https://www.youtube.com/watch? $\mathrm{v}=\mathrm{AoNIOxnxDO}$ \& \& list=PLIhUrsYr8yHx7TVB51jN3HZVyW3R6RiBg
	Unit 3   https://www.youtube.com/watch? v=YV4RZNQ2yB8\&list=PLIhUrsYr8yHxARPzEFz1nXgt8j6xF tEm   https://www.youtube.com/watch?v=vlYAGkWmiW8\&list=PLIhUrsYr8yHwdB96ft6c0Uwc4SDCLuG1v\&index=5   https://www.youtube.com/watch?v=Vo9LC9d7FQA\&list=PLIhUrsYr8yHxVky7bfrnbRcdXcHjT K83\&index=1   youtube.com/watch? $\mathrm{v}=\mathrm{t} 9$ gepMkey0w\&list=PLItCiRV7ABU4SUL7gYOSiwmMIN1t_-gQ1\&index=2
	Unit 4   https://www.youtube.com/watch?v=ifM0JQ6-Nus   https://www.youtube.com/watch? $\mathrm{v}=\mathrm{tHrfxjgFQt} 8$   https://www.youtube.com/watch? v=c1kGuiYEHh0   https://www.youtube.com/watch? $\mathrm{v}=\mathrm{UKpCFYWK7q4} \mathrm{\& t=14s}$   https://www.youtube.com/watch?v=R8Hd7DUZcF0   https://www.youtube.com/watch? v=rzXWDgfcxec   https://www.youtube.com/watch? $\mathrm{v}=\mathrm{QnN8A1mIUYY}$   https://www.youtube.com/watch?v=Gx3yy51KumA   https://www.youtube.com/watch? $\mathrm{v}=$ tnylweRokkw
	Unit 5   https://www.youtube.com/watch?v=sVWsUS 7V6s   https://www.youtube.com/watch?v=KsMil9ND5E8   https://www.youtube.com/watch?v=GGxmUWBoqcg


B. TECH FIRST YEAR					
Course Code		AME0252		L T P	Credit
Course Title		Engineering Graphics \& Solid Modelling		003	1.5
Suggested list of Experiment					
Sheet No.	Experiment No.		Name of Experiment		
1.	1		To draw plain scale and diagonal scale.		
2.	1		To draw projection of points, lines and planes.		
3.	1		To draw orthographic projection of regular solids.		
	2		To draw section of regular solids.		
4.	1		To draw development of lateral surfaces of simple solids.		
	2		To draw cycloidal or involute curve.		
5.	1		Initiating the Graphics Package; Setting the paper size, space; setting the limits, units; use of snap and grid commands in AutoCAD		
6.	1		To create 2D view of a center pin with given dimensions in AutoCAD.		
	2		To create 2D view of abase plate with given dimensions in AutoCAD.		
	3		To create 2D view of a bush with given dimensions in AutoCAD.		
	1		To create 3D view of a washer in AutoCAD.		

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

7.		
	$\mathbf{2}$	To create 3D view of a guide pin in AutoCAD.
	$\mathbf{3}$	To create 3D view of a lock nut in AutoCAD.
$\mathbf{8 .}$	$\mathbf{1}$	To create drawings of given machine components in AutoCAD.
$\mathbf{9 .}$	$\mathbf{1}$	To understand basic of CREO
	$\mathbf{2}$	$\mathbf{T}$
$\mathbf{1 0 .}$	$\mathbf{1}$	To understand basic sketching in CREO   constructions like extrude, hole, ribs, shell etc.
$\mathbf{1 1 .}$	$\mathbf{1}$	Introduction to CREO Parametric 'sketch features' (revolve, sweep, helical   sweep, sweep blend etc.
$\mathbf{1 2 .}$	Introduction to CREO Parametric 'edit features' (group, copy, mirror tool)   and 'place features' (holes, shells and drafts).	

