Page 1 of 3

Printed Page:- 03

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

Roll. No:

Subject Code:- AMTVL0215

(An Autonomous Institute Affiliated to AKTU, Lucknow)

M.Tech

SEM: II - THEORY EXAMINATION (2022-2023)

Subject: Nanoscale Devices: Modeling & Simulation

Time: 3 Hours

General Instructions:

IMP: *Verify that you have received the question paper with the correct course, code, branch etc.*

1. *This Question paper comprises of* **three Sections -A, B, & C.** *It consists of Multiple Choice Questions (MCQ's)* & *Subjective type questions.*

2. Maximum marks for each question are indicated on right -hand side of each question.

3. Illustrate your answers with neat sketches wherever necessary.

4. Assume suitable data if necessary.

5. *Preferably, write the answers in sequential order.*

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

- 1-a. Short-channel effects can be distinguished. (CO1)
 - (a) drain-induced barrier lowering
 - (b) surface scattering
 - (c) velocity saturation
 - (d) all of above

1-b. Measurement of Hall coefficient enables the determination of (CO2)

- (a) Mobility of charge carriers
- (b) Type of conductivity and concentration of charge carriers
- (c) Temperature coefficient and thermal conductivity
- (d) None of the above
- 1-c. The gap between the two walls of a double walled carbon nanotube comprised 1 of (5,5) inner tube and (12,12) outer tube in 'nano meter' is equal to (CO3)
 - (a) 6.78
 - (b) 4.76

15

Max. Marks: 70

1

1

- (c) .678
- (d).476
- Technology in which use of a layered silicon-insulator-silicon substrate in place 1-d. 1 of conventional silicon substrates in semiconductor manufacturing is referred as (CO4)
 - (a) SOI
 - (b) SOS
 - (c) IOI
 - (d) SiO
-analog-to-digital converters (ADCs) use no clock signal, because there is 1-e. 1 no timing of sequencing require (CO5)
 - (a) Flash
 - (b) Actuator
 - (c) Bipolar
 - (d) Dual

2. Attempt all parts:-

	(c) Bipolar	
	(d) Dual	
2. Attem	pt all parts:-	
2.a.	What do you mean by Plasma Oxidation? (CO1)	2
2.b.	What is the width of the depletion layer at the onset of inversion? (CO2)	2
2.c.	Why nanowires are important in devices? (CO3)	2
2.d.	Is FD-SOI compatible with cost-sensitive? (CO4)	2
2.e.	What is Logic Gates? (CO5)	2
	SECTION B	20

3. Answer any five of the following:-

4. Answer any <u>one</u> of the following:-					
	SECTION C	35			
3.g.	What is op-amp and write its applications? (CO5)	4			
3.f.	How we calculate the performance of single gate SOI? (CO4)	4			
3.e.	Explain the band structure of graphene. (CO3)	4			
3-d.	Enlist the problem associated with Miller overlap capacitance (CO2)	4			
3-c.	Write the boundary conditions for minimum gate insulator thickness in the DG MOS system (CO2)	4			
3-b.	How to overcome the noise problem in MOSFET Scaling? (CO1)	4			
З-а.	Explain the working principle of Quantum effects with suitable diagram (CO1)	4			

. Page 2 of 3

- 4-a. Discuss the Narrow channel effect in detail and justify that due to this effect 7 how threshold voltage is greater than normal channel devices? (CO1)
- 4-b. What do you mean by ITRS? How its report set a benchmark for the 7 semiconductor industry? (CO1)

5. Answer any one of the following:-

- 5-a. Explain semiconductor thickness effect in detail. Also draw the graph between 7 energy and semiconductor thickness (CO2)
- 5-b. Explain Two-dimensional confinement in MOS structure with suitable diagram 7 (CO2)

6. Answer any one of the following:-

Explain Schottky barrier carbon nanotube FETs with suitable diagram (CO3)	7			
Define I-V characteristics for carbon nanotube FETs. (CO3)	7			
7. Answer any <u>one</u> of the following:-				
Explain advanced multi-gate devices in detail. (CO4)	7			
Explain the total ionizing dose effects on various gate devices. (CO4)	7			
8. Answer any <u>one</u> of the following:-				
Explain the impact of device performance on digital circuits. (CO5)	7			
Write the short notes on - (CO5) i) Band gap voltage reference ii) Signal to Noise ratio and its practical significance iii) Flicker Noise calculation process	7			
	Explain Schottky barrier carbon nanotube FETs with suitable diagram (CO3) Define I-V characteristics for carbon nanotube FETs. (CO3) er any one of the following:- Explain advanced multi-gate devices in detail. (CO4) Explain the total ionizing dose effects on various gate devices. (CO4) er any one of the following:- Explain the impact of device performance on digital circuits. (CO5) Write the short notes on - (CO5) i) Band gap voltage reference ii) Signal to Noise ratio and its practical significance iii) Flicker Noise calculation process			