NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

 (An Autonomous Institute Affiliated to AKTU, Lucknow)B.Tech

SEM: II - THEORY EXAMINATION (20222-2023)
Subject: Data Structures \& Algorithms
Time: 3 Hours
Max. Marks: 100

General Instructions:

IMP: Verify that you have received the question paper with the correct course, code, branch etc.

1. This Question paper comprises of three Sections -A, B, \& C. It consists of Multiple Choice Questions (MCQ's) \& Subjective type questions.
2. Maximum marks for each question are indicated on right -hand side of each question.
3. Illustrate your answers with neat sketches wherever necessary.
4. Assume suitable data if necessary.
5. Preferably, write the answers in sequential order.
6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

1-a. An algorithm performs lesser number of operations when the size of input is small, but performs more operations when the size of input gets larger. State the correct option. (CO1)
(a) may be
(b) TRUE
(c) FALSE
(d) all of the mentioned

1-b. An algorithm is made up of 2 modules M1\&M2.; If order of $M 1$ is $f(n) \& M 2$ is $\mathrm{g}(\mathrm{n})$ then the order of algorithm is? (CO1)
(a) $f(n)+g(n)$
(b) $f(n) \times g(n)$
(c) $\max (f(n), g(n))$
(d) $\min (f(n), g(n))$

1-c. Which principle works on Stack? (CO2)
(a) FILO
(b) FIFO
(c) LILO
(d) LIFO or FILO

1-d. Which Linked List have the last node of the list pointing to the first node? (CO2)
(a) Circular Doubly Linked List
(b) Circular Linked List
(c) Circular Singly Linked List
(d) Doubly Linked List

1-e. Which among the following belongs to the category of a Post-order Traversal? (CO3)
(a) Root -> Left Sub Tree -> Right Sub Tree
(b) Root -> Right Sub Tree -> Left Sub Tree
(c) Right Sub Tree -> Left Sub Tree -> Root
(d) Left Sub Tree -> Right Sub Tree -> Root

1-f. In a heap the element with the greatest key is always located in which node? 1 (CO3)
(a) leaf
(b) root
(c) first node of left sub tree
(d) first node of right sub tree

1-g. Which of the following is the fastest sorting algorithm to sort a list? (CO4)
(a) Quick sort
(b) Bubble sort
(c) Binary sort
(d) Linear sort

1-h. Which of the following is false in the case of a spanning tree of a graph G? (CO4)
(a) It is tree that spans G
(b) It is a subgraph of the G
(c) It includes every vertex of the G
(d) It can be either cyclic or acyclic

1-i. Which of the following is not a collision resolution technique? (CO5)
(a) Separate chaining
(b) Linear probing
(c) Quadratic probing
(d) Hashing

1-j. What is the disadvantage of hashing with chaining? (CO5)
(a) not easy to implement
(b) takes more space
(c) quite sensitive to hash function
(d) table gets filled up easily

2. Attempt all parts:-

2.a. What are the features of an efficient algorithm in data structure? (CO1) 2
2.b. Define Binary search tree. How it is different from binary tree? (CO2) 2
2.c. How many null nodes will a binary tree with 20 nodes have? (CO3) 2
2.d. For the following graph ,obtain adjacency matrix and adjacency list 2 representation: (CO4)

3. Answer any five of the following:-

3-a. Discuss an example which can be represented both recursively and iteratively. 6 (CO1)

3-b. \quad Show that $f(n)+g(n)=O\left(n^{2}\right)$ where $f(n)=3 n^{2}-n+4$ and $g(n)=n \operatorname{logn+5}$. (CO1)
3-c. Explain operations of a stack with an example. (CO2) 6
3-d. Explain and implement a single linked list with an example. (CO2) 6
3.e. How binary trees are represented as Arrays in the memory. (CO3) 6
3.f. Find the Minimum Spanning Tree of the following graph using Kruskal's 6 algorithm. Also find its cost for all intermediate effects. (CO4)

3.g. Find the shortest path using Dijkstra's algorithm. (CO5)

SECTION C

4. Answer any one of the following:-

4-a. Define the following terms in brief: (CO1)
(i) Time complexity (iii) Space complexity
(ii) Asymptotic Notation (iv) Big O Notation

4-b. Write a recursive program for checking whether a number is a palindrome or not. (CO1)

5. Answer any one of the following:

5-a. Write algorithm for Push and Pop operations in stack. Transform the following 10 expression into its equivalent postfix expression using stack:

$$
A+(B * C-(D / E \uparrow F) * G) * H(C O 2)
$$

5-b. What do you mean by Array? Describe the storage structure of Array.(CO2)
6. Answer any one of the following:-
$\left.\begin{array}{lll}\text { 6-a. Create a Binary Search Tree for the following data and do in-order, Preorder } & 10 \\ \text { and Post-order traversal of the tree. 50, 60, 25, 40, 30, 70, 35, 10,5 (CO3) }\end{array}\right]$
7. Answer any one of the following:-

7-a. Use Kruskal's Algorithm to extract minimum spanning tree of the graph. (CO4)

7-b. Write algorithm to perform Breadth First Search. Write one possible order of visiting the nodes of the following graph starting at vertex A. (CO4)

8. Answer any one of the following:-

8-a. What do you understand by BFS. Discuss with an appropriate example. 10 Differentiate BFS and DFS. (CO5)

8-b. Classify in detail the Hashing Functions based on the various methods by which 10 the key value is found. (CO5)

