Subject Code:- AOE0662

Roll. No:

Printed Page:- 04

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: VI CARRY OVER THEORY EXAMINATION -AUGUST 2023

Subject: Data Structures

Time: 3 Hours

General Instructions:

IMP: *Verify that you have received the question paper with the correct course, code, branch etc.*

1. This Question paper comprises of **three Sections -A, B, & C.** It consists of Multiple Choice Questions (MCQ's) & Subjective type questions.

2. Maximum marks for each question are indicated on right -hand side of each question.

3. Illustrate your answers with neat sketches wherever necessary.

4. Assume suitable data if necessary.

5. *Preferably, write the answers in sequential order.*

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

- 1-a. The largest element of an array's index is called its ______. (CO1)
 - (a) lower bound.
 - (b) upper bound.
 - (c) range.
 - (d) extraction.
- 1-b. Which of these best describes an array? (CO1)
 - (a) A data structure that shows a hierarchical behavior
 - (b) Container of objects of similar types
 - (c) Arrays are immutable once initialised
 - (d) Array is not a data structure
- 1-c. Out of the following operators ([^], *, +, &, \$), the one having highest priority is 1 _____. (CO2)
 - (a) +
 - (b) \$

20

1

Max. Marks: 100

1

	(C) ^	
	(d) &	
1-d.	Consider the following operation performed on a stack of size 5. Push(1); Pop(); Push(2); Push(3); Pop(); Push(4); Pop(); Push(2);	1
	(a) 1 (b) 2 (c) 3 (d) none of these	
1-e.	Which of the following is not an advantage of trees? (CO3) (a) Hierarchical structure (b) Faster search (c) Router algorithms (d) Undo/Redo operations in a notepad	1
1-f.	The root R of the tree T is assigned the level number (CO3) (a) 0 (b) 1 (c) -1 (d) 5	1
1-g.	For a given graph G having 'v' vertices and 'e' edges which is connected and has no cycles, which of the following statements is true? (CO4) (a) v=e (b) v = e+1	1

•

- (c) v + 1 = e
- (d) v = e-1

1-h. Prim's algorithm is also known as _____. (CO4)

	- · · · · · · · · · · · · · · · · · · ·	
	(a) Dijkstra–Scholten algorithm	
	(b) Borůvka's algorithm	
	(c) Floyd–Warshall algorithm	
	(d) DJP Algorithm	
1-i.	The complexity of the sorting algorithm measures the as a function of the number 'n' of items to be sorted. (CO5)	1
	(a) average time	
	(b) running time	
	(c) average-case complexity	
	(d) case-complexity	
1-ј.	is the method used by card sorter. (CO5)	1
	(a) Radix sort	
	(b) Insertion	
	(c) Heap	
	(d) Quick	
2. Attem	pt all parts:-	
2.a.	Define traversing. (CO1)	2
2.b.	Write any four example of stack from real life. (CO2)	2
2.c.	What do you mean by siblings in a tree? (CO3)	2
2.d.	Define adjacent vertices. (CO4)	2
2.e.	What is linear search? (CO5)	2
	SECTION B	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Differentiate between 1-D & 2-D data array and write application for it. (CO1)	6
3-b.	Explain circular linked list and doubly linked list with diagram. (CO1)	6
3-с.	What is Stack? Is stack a linear or non-linear data structure? Explain with proper reason. (CO2)	6
3-d.	Evaluate the following Postfix expression E:AB+C*D/ ,for A=2,B=3,C=4,D=5. (CO2)	6

3.e.Explain Linked List Representation of Binary Tree with example. (CO3)6

6

- 3.f. Write the adjacency and path matrix for the following graph. (CO4)
- 3.g. State different File Organizations and discuss the advantages and 6

disadvantages of each of them. (CO5)

SECTION C

50

10

4. Answer any one of the following:-

- 4-a. Explain linear data structure in detail with example. (CO1) 10
- 4-b. Define a) Data b) Data Item c) Record d) File e) Attribute (CO1) 10

5. Answer any one of the following:-

- 5-a. Distinguish between stack and queue. Explain delete and insertion operation 10 with respect to both the types of data structures. (CO2)
- 5-b. What is recursive function and recursive procedure? Explain algorithm for 10 Fibonacci Sequence with reference to recursion. (CO2)

6. Answer any one of the following:-

- 6-a. Create a Binary Search Tree for the following data and do in-order, Preorder 10 and Post-order traversal of the tree. (CO3)
 50, 60, 25, 40, 30, 70, 35, 10, 55, 65, 5
- 6-b. How to add child nodes in Binary tree, Binary Search Tree and AVL Tree? 10 Explain with example. (CO3)

7. Answer any <u>one</u> of the following:-

- 7-a. Explain BFS algorithm with an example. List any three applications of BFS 10 algorithm. (CO4)
- 7-b. What do you understand by cyclic graph? Write two ways through which a 10 graph can be represented in the memory? What do you mean by in-degree and out-degree of a graph? (CO4)

8. Answer any one of the following:-

- 8-a. Write a function for quick sort using recursion. (CO5)
- 8-b. Write an algorithm to sort the data in ascending order using quick sort and sort 10 77,33,44,11,88,22,66,55. Show steps. (CO5)