Printed Page:- 05

Roll. No:

Subject Code:- ACSE0306 / ACSEH0306

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: III - CARRY OVER THEORY EXAMINATION - AUGUST 2023 Subject: Discrete Structures

Time: 3 Hours

General Instructions:

IMP: *Verify that you have received the question paper with the correct course, code, branch etc.*

1. This Question paper comprises of three Sections -A, B, & C. It consists of Multiple Choice *Questions (MCQ's) & Subjective type questions.*

2. Maximum marks for each question are indicated on right -hand side of each question.

3. *Illustrate your answers with neat sketches wherever necessary.*

4. Assume suitable data if necessary.

5. *Preferably, write the answers in sequential order.*

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

- The set O of odd positive integers less than 10 can be expressed by 1-a. 1 (CO1)
 - (a) {1, 2, 3} (b) {1, 3, 5, 7, 9} (c) {1, 2, 5, 9} (d) {1, 5, 7, 9, 11}
- A function is said to be ______ if and only if f(a) = f(b) implies that a = b 1-b. 1 for all a and b in the domain of f. (CO1)
 - (a) One-to-many
 - (b) One-to-one
 - (c) Many-to-many
 - (d) Many-to-one

1-c. A function $f:(M,\Box) \rightarrow (N,\times)$ is a homomorphism if (CO2)

(a) f(a, b) = a*b

20

1

Max. Marks: 100

(b) f(a,b) = a / b

(c) f(a, b) = f(a)+f(b)

(d) f(a, b) = f(a)*f(a)

- 1-d. A cyclic group is always an (CO2)
 - (a) Ring
 - (b) Field
 - (c) Abelian Group
 - (d) Zero Ring
- 1-e. A free semilattice has the _____ property. (CO3)
 - (a) intersection
 - (b) commutative and associative
 - (c) universal
 - (d) identity
- 1-f. A POSET in which every pair of elements has both least upper bound and 1 greatest lower bound term as. (CO3)

1

1

1

- (a) Lattice
- (b) Sublattice
- (c) Walk
- (d) POSET
- 1-g. $p \leftrightarrow q$ is logically equivalent to _____ (CO4)
 - (a) $(p \rightarrow q) \rightarrow (q \rightarrow p)$ (b) $(p \rightarrow q) \vee (q \rightarrow p)$ (c) $(p \rightarrow q) \wedge (q \rightarrow p)$ (d) $(p \wedge q) \rightarrow (q \wedge p)$
- 1-h. What rules of inference are used in this argument? "It is either colder than 1 Himalaya today or the pollution is harmful. It is hotter than Himalaya today. Therefore, the pollution is harmful." (CO4)
 - (a) Conjunction
 - (b) Modus ponens
 - (c) Disjunctive syllogism
 - (d) Hypothetical syllogism
- 1-i. The number of circuits that can be created by adding an edge between any two 1 vertices in a tree is (CO5)

	(a) Two (b) Exactly one (c) At least two		
1-j.	(d) None A linear graph consists of vertices arranged in a line. (CO5)	1	
· j.	(a) TRUE	·	
	(b) FLASE		
	(c) either true or false		
	(d) cannot determined		
2. Attempt all parts:-			
2.a.	Define Equal and Equivalent Set with example. (CO1)	2	
2.b.	In a group (G, *) , Prove that (a * b) ⁻¹ = b ⁻¹ * a ⁻¹ , for all a,b is the element in G. (CO2)	2	
2.c.	How we can say a lattice to be a partial lattice . Justify with example. (CO3)	2	
2.d.	Prove that if x is irrational, then 1/x is irrational. (CO4)	2	
2.e.	Define Regular graph and Complete Bipartite graph with example. (CO5)	2	
	SECTION B	30	
3. Answer any <u>five</u> of the following:-			
З-а.	Differentiate contraposition and contradiction with example. (CO1)	6	
3-b.	Give an example of two uncountable sets A and B such that A – B is (CO1) a) finite. b) countably infinite. c) uncountable.	6	
З-с.	Let G be a finite group and let S be a non-empty set. Suppose that G acts on S freely and transitively. Prove that G=S. That is, the number of elements in G and S are the same. (CO2)	6	
3-d.	Let R=(R,+) be the additive group of real numbers and let R×=(R□{0},□) be the multiplicative group of real numbers. (a) Prove that the map exp:R \rightarrow R× defined by exp(x)=ex is an injective group homomorphism. (b) Prove that the additive group R is isomorphic to the multiplicative group R+={x∈R x>0}. (CO2)	6	
3.e.	Define POSET with example. Explain types of Lattice with suitable example. (CO3)	6	
3.f.	Establish these logical equivalences, where x does not occur as a free variable in A. Assume that the domain is nonempty. (CO4)	6	

.

	a) $(\forall x P (x)) \land A \equiv \forall x (P (x) \land A)$ b) $(\exists x P (x)) \land A \equiv \exists x (P (x) \land A).$		
3.g.	Explain the following: (CO5) i. Directed Graph ii. Weighted Graph	6	
	iii. Null Graph		
	SECTION C	50	
4. Answer any <u>one</u> of the following:-			
4-a.	State and prove both De'morgans laws. (CO1)	10	
4-b.	What is closure properties of relations, explain with example. (CO1)	10	
5. Answer any <u>one</u> of the following:-			
5-a.	find all the generators of cyclic group G= {1,2,3,4} with respect to operation X5. (CO2)	10	
5-b.	Let G and G' be groups and let $f:G \rightarrow G'$ be a group homomorphism. If H' is a normal subgroup of the group G', then show that H=f -1(H') is a normal subgroup of the group G. (CO2)	10	
6. Answer any <u>one</u> of the following:-			
6-a.	Show that in a complemented , distributive lattice the following are equivalent : (CO3) (i). $a^b' = 0$, (ii). $a^{v'} b = 1$	10	
6-b.	Consider the subset {2,3} {4,6} and {3,6}, and ({1,2,3,4,5,6}, /) is the poset. (CO3) i) Draw the Hasse Diagram. ii) Find the Lower bound and Upper bound of each subset if I exists. iii) Find GLB and LUB of each subset if it exists.	10	
7. Answer any <u>one</u> of the following:-			
7-a.	Let Q(x, y) denote the statement "x is the capital of y." What are these truth values? (CO4)	10	
	a) Q(Denver, ¬Colorado)		
	b) Q(¬Detroit, Michigan)		
	c) Q(ㄱMassachusetts, ㄱ Boston) d) Q(New York, New York)		
7-b.	Find the dual of each of these compound propositions. (CO4) a) $p \land \neg q \land \neg r$, b) ($p \land q \land r$) \lor s,	10	

•

c) (p \lor F) \land (q \lor T)

8. Answer any one of the following:-

- 8-a. For maximal planar graph G, prove or disprove the following: (i) if the number 10 of vertices is less than or equal to 11 then G has minimum degree less than or equal to 4. (ii) if the number of vertices is greater than or equal to 4 then G has minimum degree greater than or equal to 3. (iii) every 5-connected maximal planar graph has at least 12 vertices. (CO5)
- 8-b. Suppose the characters 'a', 'b', 'c', 'd', 'e', 'f', 'g' are stored in a Binary Search 10 Tree (BST). Draw a BST that is as tall as possible and contains all these characters. Also draw a BST that is as short as possible and contains all characters. (CO5)