Printed Page:	:-	Subject Code:- AMIAS0201A	
		Roll. No:	
NOID	A INSTITUTE OF ENGINEERING A	AND TECHNOLOGY, GREATER NOIDA	
	(An Autonomous Institute A	ffiliated to AKTU, Lucknow)	
	M.Tech	(Integrated)	
	SEM: CARRY OVER THEORY	EXAMINATION - MAY 2023	
	Subject: Engine	ering Physics	
Time: 3 Hou	rs	Max. Marks: 1	00
General Instr	uctions:		
IMP: Verify tha	it you have received the question pa	per with the correct course, code, branch etc.	
1. This Question	on paper comprises of three Sect	cions -A, B, & C. It consists of Multiple Cho	ice
Questions (MC	Q's) & Subjective type questions.		
2. Maximum m	arks for each question are indicated	d on right -hand side of each question.	
3. Illustrate you	ur answers with neat sketches where	ever necessary.	
4. Assume suite	able data if necessary.		
5. Preferably, w	vrite the answers in sequential orde	r.	
6. No sheet s	hould be left blank. Any writte	n material after a blank sheet will not	be
evaluated/chec	ked.		
	SECTIO	NA O	20
1. Attempt all	l parts:-		
1-a. The	time of observation of a pulse of	light in a frame of reference moving with	1
velo	city v is (CO1)		
	(a) 1/(1-v ² /c ²)		
	(b) $1/\sqrt{(1-v^2/c^2)}$		
	(c) $(1-v^2/c^2)$		
	(d) $\sqrt{(1-v^2/c^2)}$		
1-b. Acco	ording to relativity, length of a rod	in motion (CO1)	1
	(a) Is same as its rest length		
	(b) Is more than its rest length		
	(c) Is less than its rest length		

(d) May be more or less than or equal to rest length depending on the speed

1

Wave function Ψ gives the idea for (CO2)

(a) Energy of particle

of rod

1-c.

	·	
	(b) Probability of finding particle	
	(c) Momentum of particle	
	(d) None of these	
1-d.	Matter wave are? (CO2)	1
	(a) EM wave	
	(b) Sound wave	
	(c) None of these	
	(d) Wave associate with moving particle	
1-e.	In the diffraction pattern due to single slit, the width of the central maximum will be (CO3)	1
	(a) Greater for a narrow slit	
	(b) Less for a narrow slit	
	(c) Greater for a broad slit	
	(d) Less for a broad slit	
1-f.	Extended source is needed in (CO3)	1
	(a) Young's double slit experiment	
	(b) Bi prism Experiment	
	(c) Newton's Ring Experiment	
	(d) None of them	
1-g.	The smallest Unit in digit system is (CO 4)	1
	(a) Bit (b) Byte	
	(c) Kilobyte	
1 h	(d) Megabyte The barrier potential depends on (CO 4)	1
1-h.	The barrier potential depends on (CO 4)	1
	(a) doping density	
	(b) temperature	
	(c) electronic charges	
1:	(d) all of these	1
1-i.	Which of the following scheme does not produce lasing action? (CO 5)	1
	(a) Two level scheme	
	(b) Three- level scheme	
	(c) Four-level scheme	

SECTION C 50 4. Answer any <u>one</u> of the following:-				
	and 1.45 respectively. (CO 5)	= ^		
3.g.	Calculate a fractional difference between core and cladding surface refractive indices for a step index fiber having core and cladding refractive indices 1.65	6		
3.f.	A 20-metre length of cable has a cross-sectional area of 1mm ² and a resistance of 5 ohms. Calculate the conductivity of the cable. (CO4)	6		
	just resolve the sodium doublet (5890 & 5896 Angstrom) in the first order and second order. (CO3)			
3.e.	Find the minimum number of lines in a plane diffraction grating required to	6		
3-d.	Calculate the smallest possible uncertainty in the position of an electron moving with velocity 4×10^8 m/s. (CO2)	6		
3-c.	Find the probabilities of finding a particle trapped in a box of length L in the region from 0.45L to 0.55L for the ground and first excited state. (CO2)	6		
3-b.	The proper life of a meson is 2×10^{-8} sec. calculate the mean life of a meson moving with a velocity of 0.8c. (CO1)	6		
3-a.	Find the velocity of a particle if its kinetic energy is three times of its rest mass energy. (CO1)	6		
3. Answ	er any <u>five</u> of the following:-			
	SECTION B	30		
2.e.	Write the Components of Laser devices. (CO5)	2		
2.d.	Name the three semiconductor memory devices. (CO4)	2		
2.c.	What do you mean by grating and grating element? (CO3)	2		
2.b.	What are matter waves? (CO2)	2		
2.a.	Explain the negative results of Michelson – Morley experiments. (CO 1)	2		
2. Atten	npt all parts:-			
	(d) Critical angle			
	(c) Reflected angle			
	(a) refracted angle (b) Incident angle			
	the normal. (CO 5)			
1-j.	It is the angle at which the propagating ray strikes the interface with respect to	1		
	(d) Five -level scheme			

	clock appears to go slow to a stationary observer. (CO1)	
4-b.	State Einstein's postulates of special theory of relativity. Derive the Lorentz transformation equations. (CO1)	10
5. Answ	ver any <u>one</u> of the following:-	
5-a.	A particle of charge q and mass m is accelerated through a potential difference V. Write an expression for its de-Broglie wavelength. Find the expression for the energy state of a particle in one dimensional box. (CO2)	10
5-b.	Derive the time independent and time dependent Schrodinger wave equations. (CO2)	10
6. Answ	ver any <u>one</u> of the following:-	
6-a.	Explain the differnce between Fresnel and Fraunhoffer diffraction. Obtain the intensities of diffraction pattern in Fraunhoffer diffraction due to single slit. (CO3)	10
6-b.	Discuss the formation of interference fringes due to a wedge shaped thin film seen by normally reflected sodium light and obtain an expression for the fringe width. (CO3)	10
7. Answ	ver any <u>one</u> of the following:-	
7-a.	Obtain an expression for the electrical conductivity of an intrinsic and extrinsic semiconductors. (CO4)	10
7-b.	What is Photovoltaic effect ? Discuss the construction and working of Photovoltaic cell with neat diagram. (CO4)	10
8. Answ	ver any <u>one</u> of the following:-	
8-a.	What is fiber optics? Discuss the properties and applications of optical fiber. (CO5)	10
8-b.	Describe the construction and working of Ruby Laser. (CO5)	10