

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow)

MCA
SEM: I - CARRY OVER THEORY EXAMINATION JUNE 2023
Subject: Discrete Mathematics
Time: 3 Hours
Max. Marks: 100

General Instructions:

IMP: Verify that you have received the question paper with the correct course, code, branch etc.

1. This Question paper comprises of three Sections -A, B, \& C. It consists of Multiple Choice Questions (MCQ's) \& Subjective type questions.
2. Maximum marks for each question are indicated on right -hand side of each question.
3. Illustrate your answers with neat sketches wherever necessary.
4. Assume suitable data if necessary.
5. Preferably, write the answers in sequential order.
6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

1-a. Power set of empty set has exactly \qquad subset. (CO1)
(a) One
(b) Two
(c) Zero
(d) Three

1-b. Let $f: R \rightarrow R$ be defined by $f(x)=3 x-4$. Then $f^{-1}(x)$ is given by: (CO1)
(a) $(x+4) / 3$
(b) $(x / 3)-4$
(c) $3 x+4$
(d) None of these

1-c. \quad The number of branches incident at the node of a graph is called? (CO2)
(a) degree of the node
(b) order of the node
(c) status of the node
(d) number of the node

1-d. If R is reflexive, symmetric and transitive then the relation is said to be: (CO2)
(a) Binary Relation
(b) Equivalence Relation
(c) Irreflexive Relation
(d) Compatibility Relation

1-e. An algebraic structure \qquad is called a semigroup. (CO3)
(a) $(P, *)$
(b) $(\mathrm{Q},+$, *)
(c) $(P,+)$
(d) $(+, *)$

1-f. If $f(x)=y$ then $f^{-1}(y)$ is equal to \qquad . (CO3)
(a) y
(b) x
(c) $\times 2$
(d) none of the mentioned

1-g. Which of the following statement regarding sets is false? (CO4)
(a) $A \cap A=A$
(b) $\mathrm{A} \cup \mathrm{A}=\mathrm{A}$
(c) $A-(B \cap C)=(A-B) \cup(A-C)$
(d) $(A \cup B)^{\prime}=A^{\prime} \cup B^{\prime}$

1-h. $\quad \sim A \wedge B \rightarrow \sim(A \subset B)$ is a \qquad . (CO4)
(a) Contingency
(b) tautulogy
(c) contradiction
(d) All the above

1-i. Which of these distributions is used for a testing hypothesis? (CO5)
(a) Normal Distribution
(b) Chi- Squared Distribution
(c) Gamma Distribution
(d) Poisson Distribution

1-j. In how many ways 4 boys and 3 girls can be seated in a row so that they are alternate. (CO5)
(a) 144
(b) 288
(c) 12
(d) 256

2. Attempt all parts:-

2.a. Write the cardinal number of the set $Z=\{21,28,35,42,49\}$. (CO1) 2
2.b. Define Isomorphism of graphs. (CO2) 2
2.c. Define subset with an example. (CO3) 2
2.d. If P is false and Q is true then find the truth value of $(P \vee Q) \rightarrow \neg(P \wedge Q)$. (CO4) 2
2.e. Find the first Four terms each of the following recurrence relation:
$T_{n}=2 T_{n-1}+5 T_{n-2}$ For all integers $n \geq 2, T_{0}=4, T_{1}=5$. (CO5)

SECTION B

3. Answer any five of the following:-

3-a. $\quad R$ and S are relation on $A=\{1,2,3\}, R=\{(1,1),(1,2),(2,3),(3,1),(3,3)\}$ and $S=\{(1, \quad 6$ 2), (1, 3), (2, 1), (3, 3)\} then find RoS and SoR. (CO1)

3-b. Find the domain and range of the following real functions: (a) $y=x^{2},(b) y=3 x \quad 6$ - 7. (CO1)

3-c. Give the analysis of insertion and deletion operations of nodes in binary search 6 tree. (CO2)

3-d. Explain the Prim's algorithm to find minimal spanning tree for a graph. (CO2)
3.e. Find the number of four digit number possible with distinct digits. (CO3) 6
3.f. Justify whether the given equation is true or false: $\sim(p \rightarrow q) \equiv \sim p \rightarrow \sim q$. (CO4) 6
3.g. Solve the recurrence relation $a_{r}-3 a_{r-1}+2 a_{r-2}=0$. (CO5) 6

4. Answer any one of the following:-

$\begin{array}{ll}\text { 4-a. Prove using mathematical induction that for all } n \geq 1, & 10 \\ 1+4+7+\cdots+(3 n-2)=n(3 n-1) / 2 .(C O 1)\end{array}$
4-b. Let the function $f: R \rightarrow R$ be defined by $f(x)=x^{2}$, then find out (i) $F^{-1}(9)$ (ii) $F^{-1}(-9) . \quad 10$ (CO1)

5. Answer any one of the following:-

5-a. Prove that the relation $\{(1,1),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2)\}$ on the set $\{1,2,10$ $3\}$ is neither reflective, nor irreflexive but transitive. (CO2)

5-b. Show that vertices of every planner graph can be properly coloured with five 10
colours. (CO2)

6. Answer any one of the following:-

6-a. Prove that the set of all rational numbers Q along with the operation of addition from a group. (CO3)

6-b. Let $f: R \rightarrow R, g: R \rightarrow R$, where R is the set of real numbers be given by $f(x)=x^{2}-2$ and $g(x)=x+4$ find fog and gof. State whether these functions are bijective or not. (CO3)

7. Answer any one of the following:-

7-a. State the properties of tautology and contradiction relation and prove if $\sim A$ $\wedge B \Rightarrow \sim(A \vee B)$ is a tautology or not. (CO4)

7-b. Construct the truth table for the given compound proposition: $(P \rightarrow(P \rightarrow Q)) \rightarrow((Q \rightarrow R) \rightarrow(R \rightarrow S)) .(C O 4)$

8. Answer any one of the following:-

8-a. Determine the number of ways can the letters of the word 'DETAIL' be 10 arranged in such a way that the vowels occupy only the odd positions. (CO5)

8-b. \quad Prove that the generating function for series $1,1,1,1,1 \ldots$ is $1 /(1-x)$. (CO5)

