Printed Page:-	Subject Code:- AEC0303		
	Roll. No:		
NOIDA INSTITUTE OF ENGINEERING	AND TECHNOLOGY, GREATER NOIDA		
(An Autonomous Institute Affiliated to AKTU, Lucknow)			
В.Те	ech		
SEM: III - CARRY OVER THEORY	Y EXAMINATION - APRIL 2023		
Subject: Signals, Systems and Networks			
Time: 3 Hours	Max. Marks: 100		
General Instructions:			
IMP: Verify that you have received the question pa	per with the correct course, code, branch etc.		
1. This Question paper comprises of three Sect	:ions -A, B, & C. It consists of Multiple Choice		
Questions (MCQ's) & Subjective type questions.			
2. Maximum marks for each question are indicated	d on right -hand side of each question.		
3. Illustrate your answers with neat sketches where	ever necessary.		
4. Assume suitable data if necessary.			
5. Preferably, write the answers in sequential order	r.		
6. No sheet should be left blank. Any writte	n material after a blank sheet will not be		
evaluated/checked.	0. 3		
SECTIO	N A 20		
1. Attempt all parts:-			
1-a.	1		
1-a. A system defined by $y[n] = k = -\infty$ is ex	cample of (CO1)		
(a) invertible system			
(b) memoryless system			
(c) non-invertible system			
(d) averaging system			
1-b. Which of the following equation described	cribes a linear time-varying discrete time 1		
system. (CO1)	, J		
(a) $y(k+2) + k y(k+1) + y(k) = u(k)$			
(b) $y(k+2) + k y^2(k+1) + y(k) = 1$	u(k)		
(c) $y(k+2) + 3y(k+1) + y(k) = u(k)$			

The Fourier series representations are based on using (CO2)

(a) constant coefficients

1-c.

(d) $y(k+2) + y^2(k+1) + y(k) = u(k)$

(b) only cosine functions

1

	(d) orthogonal function	
1-d.	The property of Fourier transform which states that the compression in the time domain is equivalent to expansion in the frequency domain is (CO2)	1
•	(a) duality	
	(b) scaling	
	(c) time scaling	
	(d) frequency shifting	
1-e.	In the circuit of Figure, i(∞) is: (CO3)	1
	(a) 8 A	
	(b) 6 A	
	(c) 4 A	
	(d) 0 A	
1-f.	Laplace transform if cos(at)u(t) is? (CO3)	1
	(a) $s/a^2 + s^2$	
	(b) $a/a^2 + s^2$	
	(c) s^2/a^2+s^2	
	(d) $a^2/a^2 + s^2$	
1-g.	In two-port networks the parameter D is called (CO4)	1
	(a) Open-circuit voltage ratio	
	(b) Negative short-circuit transfer impedance	
	(c) Open-circuit transfer admittance	
	(d) Negative short-circuit current ratio	
1-h.	If two port network is reciprocal as well as symmetrical, which one of the	1
	following relation is correct? (CO4)	
	(a) Z12 =Z21 and Z11 = Z22	
	(b) Y12 =Y21 and Y11 = Y22	
	(c) AD - BC =1 and A = D	
	(d) All of the above	
1-i.	When s is real, the driving point impedance function is function and the driving point admittance function is function. (CO5)	1
	(a) real, real	
	(b) real, complex	

(c) only sine functions

(c) complex, real

(d) complex, complex

3.g. Check the positive realness of the following function. (CO5) $(s^2 + 2s) / (s^2 + 1)$

SECTION C 50

6

4. Answer any one of the following:-

4-a. Evaluate the following integrals. (CO1)
$$(i) \int_{-2}^{1} (t + t^2) \delta(t - 3) dt \quad (ii) \int_{-2}^{4} (t + t^2) \delta(t - 3) dt \quad (iii) \int_{-\infty}^{\infty} (t^2 + \cos \pi t) \delta(t - 1) dt \quad (iv) \int_{-\infty}^{\infty} (e^4) \delta(2t - 2) dt$$

4-b. Define Periodic and Non Periodic Signals.Determine weather or not given 10 signals are periodic or not, If periodic find time period. (CO1)

1.
$$x(t) = je^{j10t}$$

2. $x[n] = e^{j7\pi n}$

5. Answer any one of the following:-

5-a. Describe the properties of Laplace Transform.Find the Fourier transform of 10

$$sgn(t) = \begin{cases} 1, & t > 0 \\ -1 & t < 0 \end{cases}$$
 (CO2)

5-b. Describe Fourier transform. Find the Fourier transform G(w) of the signal g(t) = $\frac{1}{1+t^2}$ (CO2)

6. Answer any one of the following:-

6-a. Find f (t) for each F (s): (CO3)

(a)
$$\frac{10s}{(s+1)(s+2)(s+3)}$$

(b)
$$\frac{2s^2 + 4s + 1}{(s+1)(s+2)^3}$$

(c)
$$\frac{s+1}{(s+2)(s^2+2s+5)}$$

- 6-b. Explain Impulse response. From the RL circuit in Figure. Find: (CO3)
- 10

- (a) the impulse response h(t) of the circuit
- (b) the unit step response of the circuit.

7. Answer any <u>one</u> of the following:-

7-a. Write the equation of ABCD parameters. Determine the ABCD parameters for 10 the two-port shown in Fig. (CO4)

7-b. Write the Reciprocity condition in Y and H Parameters. For the ladder network in 10 Fig, determine the Y parameters in the s domain. (CO4)

8. Answer any one of the following:-

8-a. Describe the Cauer first and second form. The driving point impedance of an LC 10 network is given by

$$Z(s) = \frac{2s^5 + 12s^3 + 16s}{s^4 + 4s^2 + 3}$$

Determine the Cauer - first form of the network (CO5)

8-b. Describe the Foster form of network realization. Realize the network using 10 Cauer's first and second form. (CO5)

$$Z(s)=5(s+1)(s+4)/(s+3)(s+5).$$