Printed Page:-

Subject Code:- ACSE0501
Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

 (An Autonomous Institute Affiliated to AKTU, Lucknow)B.Tech

SEM: V - CARRY OVER THEORY EXAMINATION - APRIL 2023

Subject: Design and Analysis of Algorithms

Time: 3 Hours
Max. Marks: 100

General Instructions:

IMP: Verify that you have received the question paper with the correct course, code, branch etc.

1. This Question paper comprises of three Sections -A, B, \& C. It consists of Multiple Choice Questions (MCQ's) \& Subjective type questions.
2. Maximum marks for each question are indicated on right -hand side of each question.
3. Illustrate your answers with neat sketches wherever necessary.
4. Assume suitable data if necessary.
5. Preferably, write the answers in sequential order.
6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

1-a. The Θ notation in asymptotic evaluation represents -(CO1)
(a) Worst Case
(b) Average Case
(c) Best Case
(d) Null Case

1-b. If for an algorithm time complexity is given by $\mathrm{O}(1)$ then the complexity of it is (CO1)
(a) Exponentail
(b) Polynomial
(c) Constant
(d) None

1-c. \quad Time taken in decreasing the node value in a binomial heap is (CO2)
(a) $O(n)$
(b) $\mathrm{O}(1)$
(c) $O(\log n)$
(d) $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

1-d. Which of the following is the most widely used external memory data 1 structure? (CO2)
(a) AVL tree
(b) B-tree
(c) Red-black tree
(d) Both AVL tree and Red-black tree

1-e. Time complexity of Breadth First Search algorithm is (CO3)
(a) $\mathrm{O}(\mathrm{E}+\mathrm{V})$
(b) $\mathrm{O}(\mathrm{V} \lg \mathrm{E})$
(c) $\mathrm{O}(\mathrm{lg} \mathrm{V})$
(d) $O(E \lg \mathrm{E})$

1-f. Time complexity of Bellman-Ford algorithm is (CO3)
(a) $O(V \lg E)$
(b) $\mathrm{O}((\mathrm{V}+\mathrm{E}) \lg \mathrm{V})$
(c) $O(E V)$
(d) $O(E \lg E)$

1-g. If a problem can be broken into subproblems which are reused several times, the problem possesses \qquad property. (CO4)
(a) Overlapping subproblems
(b) Optimal substructure
(c) Memoization
(d) Greedy
1-h. In dynamic programming, the technique of storing the previously calculated values is called (CO4)
(a) Saving value property
(b) Storing value property
(c) Memoization
(d) Mapping

1-i. \quad Rabin and Karp Algorithm (CO5)
(a) String Matching Algorithm
(b) Shortest Path Algorithm
(c) Minimum spanning tree Algorithm
(d) Approximation Algorithm

1-j. If the expected number of valid shifts is small and modulus is larger than the length of pattern what is the matching time of Rabin Karp Algorithm? (CO5)
(a) Theta (m)
(b) $\mathrm{Big}-\mathrm{Oh}(\mathrm{n}+\mathrm{m})$
(c) Theta(n-m)
(d) $\mathrm{Big}-\mathrm{Oh}(\mathrm{n})$

2. Attempt all parts:-

2.a. Write down the characteristics of algorithm.(CO1)
2.b. Define the properties of B-Tree.(CO2)
2.c. Explain Negative weighted cycles. (CO3)
2.d. What is $0 / 1$ knapsack problem? (CO4)
2.e. Define NP- hard problem . (CO5)
22.e. Define NP- hard problem . (CO5)2

SECTION B

SECTION B30
3. Answer any five of the following:-
3-a. Explain asymptotic notations with example. (CO1) 6
3-b. Write an algorithm of Quick sort.Explain with example. (CO1) 6
3-c. Insert the following keys into empty B-tree:- $86,23,91,4,67,18,32,54,46,96$, 6 45 with degree $\mathrm{t}=2$ and delete 18,23 from it. (CO2)
3-d. Discuss the rotation operation of RB- Tree. With example (CO2) 6
3.e. Consider the following instances of the fractional knapsack problem: $\mathrm{n}=3, \mathrm{M}=$ 6 $20, \mathrm{~V}=(24,25,15)$ and $\mathrm{W}=(18,15,20)$ find the feasible solutions. (CO3)
3.f. Write an algorithm for solving n-queen problem. (CO4) 6
3.g. Define Approximation algorithms for Traveling sales man problem. (CO5) 6
SECTION C 50
4. Answer any one of the following:-
4-a. Solve the recurrence relation ? By using recusion tree Method (CO1) 10
$T(n)=1 n=1$

$$
T(n)=2 T(n / 2)+n n>1
$$

4-b. Solve the recurrence relation ? By using recusive tree Method or Back 10 Substitution methord. (CO1)

$$
T(n)=1 n=0
$$

$$
T(n)=T(n-1)+n n>0
$$

5. Answer any one of the following:-

5-a. Explain deletion algorithm in red black tree in detail. Write down it's complexity 10
(CO2)
5-b. Explain the Properties of Binomial Heap. Write an algorithm to perform uniting 10 two binomial Heaps. And also to find the Minimuim Key (CO2)

6. Answer any one of the following:-

6-a. Implement Merge sort algorithm. Step by Step sort the following sequence in 10 increasing order using merge sort algorithm <1,2,3,4,5,6,7,8>. Analyze the algorithm for worst-case time complexity. (CO3)
6-b. Explain Strassen matrix multiplication along with an example? Why and when 10do we prefer it over normal matrix multiplication. (CO3)

7. Answer any one of the following:-

7-a. What is the graph coloring problem ? What do you mean by optimal coloring of 10a graph ? Show that every bipartite graph is 2-colorable. (CO4)
7-b. \quad State the Sum-of-Subset problem. Explain the dynamic approach for the same 10 problem and apply same approach on following instance The Set: \{10, 7, 5, 18,$12,20,15\}$The sum Value: 35 (CO4)
8. Answer any one of the following:-
8-a. (a) How do we prove that a given problem is in NP? (CO5) 10
(b) How do we prove that a given problem is in NPC? (CO5)
8-b. What is class NP? Discuss about any five problems for which no polynomial 10 time algorithm has been found. (CO5)

