Printed Page:-

Subject Code:- ACSBS0501
Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

 (An Autonomous Institute Affiliated to AKTU, Lucknow)B.Tech

SEM: V - CARRY OVER THEORY EXAMINATION - APRIL 2023

Subject: Design and Analysis of Algorithms

Time: 3 Hours
Max. Marks: 100

General Instructions:

IMP: Verify that you have received the question paper with the correct course, code, branch etc.

1. This Question paper comprises of three Sections -A, B, \& C. It consists of Multiple Choice Questions (MCQ's) \& Subjective type questions.
2. Maximum marks for each question are indicated on right -hand side of each question.
3. Illustrate your answers with neat sketches wherever necessary.
4. Assume suitable data if necessary.
5. Preferably, write the answers in sequential order.
6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

1-a. Which case indicate the minimum time required for program execution? [CO1]
(a) best case
(b) average case
(c) worst case
(d) None of the above

1-b. The complexity of linear search algorithm is [CO1]
(a) $O(n)$
(b) $\mathrm{O}(\log \mathrm{n})$
(c) $\mathrm{O}\left(\mathrm{n}^{2}\right)$
(d) $O(n \log n)$

1-c. If a problem can be broken into subproblems which are reused several times, the problem possesses \qquad property. [CO2]
(a) Overlapping subproblems
(b) Prim's algorithm
(c) Kruskal algorithm
(d) Bellmen Ford Shortest path algorithm

1-d. In fractional knapsack problem, what will happen if maximum capacity of knapsack is not reached and no item can be completely inserted into the knapsack? [CO2]
(a) A whole item can be added
(b) Fraction of item can be added
(c) No item can be added
(d) None of the options

1-e. Which of the following is false in the case of a spanning tree of a graph G?. [CO3]
(a) It is tree that spans G
(b) It is a subgraph of the G
(c) It includes every vertex of the G
(d) It can be either cyclic or acyclic

1-f. For a directed graph, the sum of the lengths of the lists is.[CO3]
(a) $E=2|V|$
(b) $E=2|V 2|$
(c) $E=|V|$
(d) $V=|E|$

1-g. is the class of decision problems that can be solved by nondeterministic polynomial algorithms. [CO4]
(a) NP
(b) P
(c) Hard
(d) Complete

1-h. What does NP stands for in complexity classes' theory? [CO4]
(a) Non polynomial time
(b) Non-deterministic polynomial time
(c) Both (a) and (b)
(d) None of the mentioned

1-i. .Assuming P!= NP, which of the following is true ? [CO5]
(a) NP-complete $=$ NP
(b) NP-complete intersection $\mathrm{P}=$ phi
(c) NP-hard $=$ NP
(d) P = NP-complete

1-j. Basic principle in Rabin Karp algorithm. [CO5]
(a) Hashing
(b) Sorting
(c) Augmenting
(d) Dynamic Programming

2. Attempt all parts:-

2.a. State the difference between Program, Algorithm and Pseudocode . [CO1]
2.b. Write short note on Strassen's Method. [CO2]
2.c. Write about Topological Sorting ? [CO3]
2.d. Differentiate between Decidable and undecidable Problem with the help of an example. [CO4]
2.e. What do you understand about computability of algorithms? [CO5]

SECTION B

3. Answer any five of the following:-

3-a. Explain Algorithm Design Techniques. [CO1] 6
3-b. Suppose there are 60 students in the class. How will you calculate the number of absentees in the class? Write Algorithm and the Pseudocode for above problem. [CO1]

3-c.

Find the Hamiltonian circuit in the following graph using backtracking. [CO2]
3-d. Explain TSP (travelling sales person) problem with example. Write an approach 6 to solve T'SP problem.[CO2]
3.e. Implement an algorithm to find strongly connected components in a graph. 6 Find strongly connected components for the given graph. [CO3]

3.f. State Hamiltonian Circuit problem.[CO4]
3.g. Explain Travelling Salesman Problem(TSP) with the triangle inequality. [CO5]

SECTION C

4. Answer any one of the following:-

4-a. Solve the following recurrence using recursion tree/substitution method. [CO1]

$$
T(n)=3 T(n / 4)+\Theta\left(n^{\wedge} 2\right)
$$

4-b. Find the complexity of below recurrence: [CO1]
$T(n)=\{3 T(n-1)$, if $n>0$,
$T(n)=\{1$, otherwise
And
$T(n)=\{2 T(n-1)-1$, if $n>0$,
$T(n)=\{1$, otherwise
5. Answer any one of the following:-

5-a. Write algorithm to solve fractional knapsack problem. For the given items find the optimal solution: I:, W: $<6,2,4,3,5\rangle, \mathrm{P}:<12,10,9,9,5\rangle$, capacity of knapsack $=10$. [CO2]

5-b. Solve the instance of $0 / 1$ knapsack problem using dynamic Programming : $\mathrm{n}=$ $4, M=25,(P 1, P 2, P 3 P 4)=(10,12,14,16),(W 1, W 2, W 3, W 4)=(9,8,12,14)$. [CO2]

6. Answer any one of the following:-

Write pseudo code for Prims Algorithm. Construct the minimum cost-spanning tree for the following graph using Prims Algorithm. [CO3]

6-b.

Implement Kruskal's algorithm to find the minimum spanning tree. Explain the algorithm step by step. Analyze its time complexity. Find MST of the given graph using Kruskal's algorithm. [CO3]

7. Answer any one of the following:-

7-a. What is randomized algorithm? What is the concept behind randomized 10 algorithms? [CO4]

7-b. Implement an algorithm for Knapsack problem using NP-Hard Approach. [CO4] 10
8. Answer any one of the following:-

8-a. Can we show that the Halting problem is less than NP hard? If yes, explain with 10 an example. [CO5]

8-b. What is randomized algorithms? What is the concept behind randomized 10 algorithms? [CO5]

