Subject Code:- ACSBS0501

Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: V - CARRY OVER THEORY EXAMINATION - APRIL 2023

Subject: Design and Analysis of Algorithms

Time: 3 Hours

Printed Page:-

General Instructions:

IMP: *Verify that you have received the question paper with the correct course, code, branch etc.*

1. This Question paper comprises of **three Sections -A, B, & C.** It consists of Multiple Choice Questions (MCQ's) & Subjective type questions.

2. *Maximum marks for each question are indicated on right -hand side of each question.*

3. Illustrate your answers with neat sketches wherever necessary.

4. Assume suitable data if necessary.

5. *Preferably, write the answers in sequential order.*

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

- 1-a. Which case indicate the minimum time required for program execution? [CO1] 1
 - (a) best case

(b) average case

(c) worst case

(d) None of the above

1-b. The complexity of linear search algorithm is [CO1]

- (a) O(n)
- (b) O(log n)
- (c) O(n²)
- (d) O(n log n)
- 1-c.If a problem can be broken into subproblems which are reused several times,1the problem possesses ______ property. [CO2]
 - (a) Overlapping subproblems
 - (b) Prim's algorithm

20

1

Max. Marks: 100

- (c) Kruskal algorithm
- (d) Bellmen Ford Shortest path algorithm
- 1-d. In fractional knapsack problem, what will happen if maximum capacity of 1 knapsack is not reached and no item can be completely inserted into the knapsack? [CO2]
 - (a) A whole item can be added
 - (b) Fraction of item can be added
 - (c) No item can be added
 - (d) None of the options
- 1-e. Which of the following is false in the case of a spanning tree of a graph G?. 1 [CO3]
 - (a) It is tree that spans G
 - (b) It is a subgraph of the G
 - (c) It includes every vertex of the G
 - (d) It can be either cyclic or acyclic
- 1-f. For a directed graph, the sum of the lengths of the lists is.[CO3]
 - (a) E = 2 |V|
 - (b) E = 2 |V2|
 - (c) E = |V|
 - (d) V = |E|
- 1-g. ______ is the class of decision problems that can be solved by non-_____ 1 deterministic polynomial algorithms. [CO4]

1

1

1

(a) NP

- (b) P
- (c) Hard
- (d) Complete
- 1-h. What does NP stands for in complexity classes' theory? [CO4]
 - (a) Non polynomial time
 - (b) Non-deterministic polynomial time
 - (c) Both (a) and (b)
 - (d) None of the mentioned
- 1-i. .Assuming P != NP, which of the following is true ? [CO5]
 - (a) NP-complete = NP

	(b) NP-complete intersection P = phi	
	(c) NP-hard = NP	
	(d) P = NP-complete	
1-j.	Basic principle in Rabin Karp algorithm. [CO5]	1
	(a) Hashing	
	(b) Sorting	
	(c) Augmenting	
	(d) Dynamic Programming	
2. Attempt all parts:-		
2.a.	State the difference between Program, Algorithm and Pseudocode . [CO1]	2
2.b.	Write short note on Strassen's Method. [CO2]	2
2.c.	Write about Topological Sorting ? [CO3]	2
2.d.	Differentiate between Decidable and undecidable Problem with the help of an	2
	example. [CO4]	
2.e.	What do you understand about computability of algorithms? [CO5]	2
	SECTION B	30
3. Answer any <u>five</u> of the following:-		
3-a.	Explain Algorithm Design Techniques. [CO1]	6
3-b.	Suppose there are 60 students in the class. How will you calculate the number	6
	of absentees in the class? Write Algorithm and the Pseudocode for above	
	problem. [CO1]	
3-с.		6

Find the Hamiltonian circuit in the following graph using backtracking. [CO2]

- 3-d. Explain TSP (travelling sales person) problem with example. Write an approach 6 to solve T'SP problem.[CO2]
- 3.e.Implement an algorithm to find strongly connected components in a graph.6Find strongly connected components for the given graph. [CO3]

6

50

10

- 3.f. State Hamiltonian Circuit problem.[CO4]
- 3.g. Explain Travelling Salesman Problem(TSP) with the triangle inequality. [CO5]

SECTION C

4. Answer any one of the following:-

- 4-a. Solve the following recurrence using recursion tree/substitution method. [CO1] 10 T(n) = 3T (n/4) + $\Theta(n^2)$
- 4-b. Find the complexity of below recurrence: [CO1]

T(n)= { 3T(n-1), if n>0,

T(n) = { 1, otherwise

T(n)= { 2T(n-1) - 1, if n>0,

T(n) = { 1, otherwise

5. Answer any <u>one</u> of the following:-

- 5-a. Write algorithm to solve fractional knapsack problem. For the given items find 10 the optimal solution: I:, W: <6, 2, 4, 3, 5>, P: <12, 10, 9, 9, 5>, capacity of knapsack = 10. [CO2]
- 5-b. Solve the instance of 0/1 knapsack problem using dynamic Programming : n = 10 4, M = 25, (P1, P2, P3 P4) = (10, 12, 14, 16), (W1, W2, W3, W4) = (9, 8, 12, 14). [CO2]
- 6. Answer any one of the following:-

6-a.

6-b.

Write pseudo code for Prims Algorithm. Construct the minimum cost-spanning tree for the following graph using Prims Algorithm. [CO3]

algorithm to find the minimum spanning tree. Explain the algorithm step by step. Analyze its time complexity. Find MST of the given graph using Kruskal's algorithm. [CO3]

7. Answer any one of the following:-

- 7-a. What is randomized algorithm? What is the concept behind randomized 10 algorithms? [CO4]
- 7-b. Implement an algorithm for Knapsack problem using NP-Hard Approach. [CO4] 10

8. Answer any <u>one</u> of the following:-

- 8-a. Can we show that the Halting problem is less than NP hard? If yes, explain with 10 an example. [CO5]
- 8-b. What is randomized algorithms? What is the concept behind randomized 10 algorithms? [CO5]

10

Kruskal's