	•	
Printed Page:-	Subject Code:- ACSBS0306	
	Roll. No:	
NOIDA INSTITUTE OF ENGINEERING	AND TECHNOLOGY, GREATER NOIDA	
(An Autonomous Institute Affiliated to AKTU, Lucknow)		
B.Tech		
SEM: III - CARRY OVER THEORY EXAMINATION - APRIL 2023		
Subject: Formal Language & Automata Theory		
Time: 3 Hours	Max. Marks: 100	
General Instructions:		
IMP: Verify that you have received the question po		
	tions -A, B, & C. It consists of Multiple Choice	
Questions (MCQ's) & Subjective type questions.	ad an right, hand side of each question	
2. Maximum marks for each question are indicate 3. Illustrate your answers with neat sketches when		
4. Assume suitable data if necessary.	ever necessary.	
5. Preferably, write the answers in sequential orde	or	
6. No sheet should be left blank. Any written material after a blank sheet will not be		
evaluated/checked.		
SECTIO	NA 20	
1. Attempt all parts:-		
1-a. In DFA the transition function δ is given	en by: (CO1) 1	
(a) δ : Q × $\Sigma \rightarrow 2Q$		
(b) δ: Q×q0 → Q		
(c) $\delta: Q \times \Sigma \to Q$		
(d) δ : Q×q0 \rightarrow F		
1-b. Moore machine is having the output	at (CO1) 1	
(a) Transition		
(b) State		
(c) Both		
(d) Initial State		
1-c. Which of the following does not belor	ng to CFG ? (CO2)	
(a) Terminal Symbol		
(b) End Symbol		
·		
(c) Start symbol		

	(d) Non Terminal	
1-d.	Grammar is defined by number oftuples. (CO2)	1
	(a) 4	
	(b) 5	
	(c) 3	
	(d) 2	
1-e.	Turing machine was invented in by Alan Turing.(CO3)	1
	(a) 1938	
	(b) 1936	
	(c) 1836	
	(d) 1838) <
1-f.	A Turing Machine can always move Left or (CO3)	1
	(a) Right	
	(b) Shift	
	(c) Up	
	(d) Down	
1-g.	If every string of a language can be determined, whether it is legal or illegal in	1
	finite time, the language is called (CO4)	
	(a) Non-deterministic	
	(b) Deterministic	
	(c) Undecidable	
	(d) Decidable	
1-h.	Halting problem is an example for? (CO4)	1
	(a) Decidable problem	
	(b) undecidable problem	
	(c) complete problem	
	(d) traceable problem	
1-i.	Which of the following is true about NP-Complete and NP-Hard problems.(CO5)	1
	(a) If we want to prove that a problem X is NP-Hard, we take a known NP-F problem Y and reduce Y to X	lard
	(b) The first problem that was proved as NP-complete was the cires satisfiability problem.	cuit
	(c) NP-complete is a subset of NP Hard	

(d) All of the above Which of the following statements are TRUE? 1 1-j. (CO5) (1) The problem of determining whether there exists a cycle in an undirected graph is in P. (2) The problem of determining whether there exists a cycle in an undirected graph is in NP. (3) If a problem A is NP-Complete, there exists a non-deterministic polynomial time algorithm to solve A. (a) 1, 2 and 3 (b) 1 and 3 (c) 2 and 3 (d) 1 and 2 2. Attempt all parts:-2.a. Differentiate between Non Deterministic Finite Automata and Deterministic Finite Automata. (CO1) Differentiate between Right Linear Grammar and Left Linear Grammar with the 2.b. 2 help of suitable example. (CO2) 2.c. Define instantaneous description of a Turing Machine. (CO3)2 Let M1 and M2 be arbitrary Turing machines. Show that the problem "L(M1) \subseteq 2.d. 2 (M2) " is undecidable. (CO4) 2 2.e. Describe Cook's Theorem in brief. SECTION B 30 3. Answer any five of the following:-

- 3-a. Write regular expressions for the following languages on {0, 1}. (CO1) 6 (a) all strings ending in 01,
 - (b) all strings not ending in 01,
- 3-b. For Σ = {a,b}, Construct DFA's that accept the sets consisting of : (CO1)
 - a) all strings with no more than three a's,
 - b) all strings with at least one a and exactly two b's,
- 3-c. Remove all unit-productions, all useless productions, and all λ -productions 6 from the grammar (CO2)
- 3-d. Convert the grammar into Greibach normal form. (CO2)

f(m) = m-2, if m > 21, if m <= 2

7. Answer any one of the following:-

- 7-a. Describe the Universal Turing machine. Build a Turing Machine that accepts the 10 language $L = \{ a^n b^{n+1} \}$. (CO4)
- 7-b. What do you understand by undecidable problem? State the Halting Problem 10 and prove that Halting problem is undecidable. (CO4)

8. Answer any one of the following:-

- 8-a. Prove that the Satisfiability Problem(SAT) is NP-complete. (CO5) 10
- 8-b. Discuss the general plan for analyzing Time efficiency of recursive algorithm. (CO5)