Pri	nte	ed P	ลต	₽
ГП	1116	JU F	au	ᠸ

Subject Code:- ACSBS020	05
-------------------------	----

Roll. No:

- 1	\Box	\Box	\Box		\Box	\Box		\Box	\Box		\Box		
- 1	1 1	 ıı	I I		1 1	1 1	I I	I I	ıı	I I	1 1	I I	
- 1		 1 1	1 1	 	1 1	1 1	I I		1 1	I I		I I	
- 1	1 1	 ıı	I I		1 1	1 1	I I	I I	ıı	I I	1 1	I I	
- 1	1 1	 ıı	I I		1 1	1 1	I I	I I	ıı	I I	1 1	I I	

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: II - CARRY OVER THEORY EXAMINATION - MAY 2023

Subject: Linear Algebra

Time: 3 Hours Max. Marks: 100

General Instructions:

IMP: Verify that you have received the question paper with the correct course, code, branch etc.

- **1.** This Question paper comprises of **three Sections -A, B, & C.** It consists of Multiple Choice Questions (MCQ's) & Subjective type questions.
- 2. Maximum marks for each question are indicated on right -hand side of each question.
- **3.** *Illustrate your answers with neat sketches wherever necessary.*
- **4.** Assume suitable data if necessary.
- **5.** Preferably, write the answers in sequential order.
- **6.** No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A 20

1. Attempt all parts:-

1-a. If $A = \begin{bmatrix} a+ib & c+id \\ -c+id & a-ib \end{bmatrix}$, where $a^2+b^2+c^2+d^2=1$, then A^{-1} is equal to

(CO1)

(a)
$$A = \begin{bmatrix} a+ib & -e+id \\ -c+id & a-ib \end{bmatrix}$$

$$A = \begin{bmatrix} a - ib & -c - id \\ c + id & a + ib \end{bmatrix}$$

$$A = \begin{bmatrix} a - ib & -c - id \\ c - id & a + ib \end{bmatrix}$$

(d) none of these

1-b. Cramer's rule fails for

1

(CO1)

- (a) Determinant > 0
- (b) Determinant < 0
- (c) Determinant = 0
- (d) none of these

If the rank of a matrix A is 2, then the rank of A' is (CO2) 1 1-c. (a) 3 (b) 2(c) 8(d) none of these The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{bmatrix}$ is 1 1-d. (CO2) (a) 2(b) 3(c) 4(d) None of these Which of the set of vectors are linearly dependent? (CO3)1-e. (a) (1, 1, 4), (1, 0, 0), (1, 1, 0) (b) (1, 2, 4), (1, 0, 0), (0, 1, 0), (0,0, 1) (c) (1, 2, 4), (1, -1, 0), (0, 0, 1) (d) None of these 1-f. Which statement is correct? (CO3) 1 (a) $\|\alpha\| \ge 0$ if and only if $\alpha = 0$ (b) $\|a\| = 0$ if and only if a = 0(c) $\|a\| = 0$ if and only if a (d) None of these If A is a skew Hermitian matrix, then the principal diagonal elements of A are 1-g. 1 (CO4) all (a) Real (b) Negative (c) Positive (d) None of these $4A^{-1} + 3A + 2I$, where $A = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$ are (CO4) 1-h. 1 The eigen values of (a) 1, 2

(d) None of these

(b) 9, 15

(c) 3, 4

1-i. 1 If 0 is a Eigen value of a matrix iff the matrix is (CO5) (a) Non singular (b) Unitary (c) Singular (d) None of these If $A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$ then the Eigen value of A^TA are (CO5) 1-j. 1 (a) 45,5 (b) 45, 45 (c) 5, 5(d) None of these 2. Attempt all parts:-If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, show that $A^2 - 5A = 2I$, where I is the unit matrix of order 2.(CO1) 2.a. Solve the following system of equations x + y + z = 0, x + 2y - z = 0, 2x + y + 3z = 02.b. 2 0.(CO2)Show that the vectors $\{(1,1,0,0), (0,1,-1,0), (0,0,0,3)\}$ in \mathbb{R}^4 are linearly 2 2.c. independent. (CO3) $A = \begin{bmatrix} -2 & 1 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ 2 2.d. For the matrix A, Find the sum of eigen values where (CO4)In singular value decomposition if $A = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$ then find S? (CO5) 2 2.e. **SECTION B** 30 3. Answer any five of the following:- $\begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$ by elementary transformation.(CO1) 3-a. 6 Find the inverse of the matrix Reduce the matrix $A = \begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$ to upper traingular form. (CO1)

Find all values of μ for which rank of the matrix $A = \begin{bmatrix} \mu & -1 & 0 & 0 \\ 0 & \mu & -1 & 0 \\ 0 & 0 & \mu & -1 \\ -6 & 11 & -6 & 1 \end{bmatrix}$ is equal to 3. (CO2) 3-b. 6 3-c. 6 3-d. Show that the vectors $X_1 = [1,2,4]$, $X_2 = [2,-1,3]$, $X_3 = [0,1,2]$ and $X_4 = [-3,7,2]$ are 6 linearly dependent and find the relation between them. (CO2)

J.C.	of a. (CO3)	·						
3.f.	$\begin{bmatrix} -1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5 \end{bmatrix}$ as the sum of a symmetric and a skew	6						
	Express the matrix $\begin{bmatrix} 5 & 0 & 5 \end{bmatrix}$ as the sum of a symmetric and a skew							
	symmetric matrix. (CO4)							
3.g.	Given the following data, Using PCA find the covariance.(CO5)	6						
	x: 4 8 13 7 y: 11 4 5 14							
	SECTION C	50						
4. Ansv	ver any <u>one</u> of the following:-							
4-a.	Solve the system of equations by matrix method: (CO1)	10						
	x+2y-3z=4, 2x+3y+2z=2 and 3x-3y-4z=11.	>						
4-b.	If $A = \begin{bmatrix} 1 & 2 & 1 \\ a & 0 & 4 \\ 1 & 1 & 1 \end{bmatrix}$ and adj(adj. A) = A, find a. (CO1)	10						
5. Ansv	ver any <u>one</u> of the following:-							
5-a.	Determine the value of λ and μ so that the equations $x + y + z = 6$, $x + 2y + 3z =$	10						
	10, $x + 2y + \lambda z = \mu$. (CO2)							
	(i) No solution							
	(ii) Unique solution							
	(iii) Infinite solution							
5-b.	Show that the following system of equation $3x+4y+5z = a$, $4x+5y+6z = b$,	10						
	5x+6y+7z = c is consistent only if a , b and c are in arithmetic progression (AP). (CO2)							
6. Ansv	ver any <u>one</u> of the following:-							
6-a.	If W_1 and W_2 are subspaces of the vector space $R^4(R)$ generated by	10						
	$S_1 = \{(1,1,0,-1), (1,2,3,0), (2,3,3,-1)\}, S_2 = \{(1,2,2,-2), (2,3,2,-3), (1,3,4,-3)\}$ respectively,							
	Determine-(CO3)							
	(a) $\dim(W_1 + W_2)$							
	(b) $dim(W_1 \cap W_2)$							
6-b.	Apply Gram-schmidt process to the vectors α_1 =(1,0,1), α_2 =(1,0,-1), α_3 =(0,3,4) to	10						
	obtain the orthonormal basis for V ₃ (R).(CO3)							
7. Ansv	ver any <u>one</u> of the following:-							
7-a.	Show that the mapping $T:V_3(R) \to V_2(R)$ defined as $T(a,b,c) = (a,b)$ is a linear transformation. (CO4)	10						

Page 4 of 5

values

of

7-b.

Find

the

eigen

 $3A^3 + 5A^2 - 6A + 2I$ where

10

$$A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{bmatrix}. \quad (CO4)$$

8. Answer any one of the following:-

8-a.	Find a singular value decomposition of $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$.(CO5)	10
------	--	----

