## Printed Page:-

Subject Code:- AAS0104
Roll. No:


# NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA 

 (An Autonomous Institute Affiliated to AKTU, Lucknow)B.Tech

SEM: I - CARRY OVER THEORY EXAMINATION - APRIL 2023
Subject: Mathematical Foundations-I
Time: 3 Hours
Max. Marks: 100

## General Instructions:

IMP: Verify that you have received the question paper with the correct course, code, branch etc.

1. This Question paper comprises of three Sections -A, B, \& C. It consists of Multiple Choice Questions (MCQ's) \& Subjective type questions.
2. Maximum marks for each question are indicated on right -hand side of each question.
3. Illustrate your answers with neat sketches wherever necessary.
4. Assume suitable data if necessary.
5. Preferably, write the answers in sequential order.
6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

## SECTION A

## 1. Attempt all parts:-

1-a. If the eigen values of a matrix $A$ are 4,5,7 then write the eigen values of $A^{-1}$ are. (CO1)
(a) $4,5^{2}, 7^{3}$
(b) $4,5,7$
(c) $1 / 4,1 / 5,1 / 7$
(d) none of these

1-b. If every minor of order $r$ of a matrix $A$ is zero, then the rank $A$ is (CO1)
(a) greater than $r$
(b) equal to $r$
(c) less than or equal to $r$
(d) less than $r$

1-c. Which condition exist for function to be linear transformation ? (CO2)
(a) $T(a \alpha+b \beta)=a T(\beta)+b T(\alpha)$
(b) $T(a \alpha+b \beta)=a T(\alpha)+b T(a)$
(c) $T(a \alpha+b \beta)=a T(\alpha)+b T(\beta)$
(d) None of these

1-d. If $T$ be a linear transformation from $U$ into $V$, then according to rank and nullity theorem: (CO2)
(a) $\operatorname{Rank}(T)-\operatorname{Nullity}(T)=\operatorname{Dim} U$
(b) $\operatorname{Rank}(T)+\operatorname{Nullity}(T)=\operatorname{Dim} U$
(c) $\operatorname{Rank}(\mathrm{T})+\operatorname{Nullity}(\mathrm{T})=\operatorname{Dim} \mathrm{V}$
(d) None of these

1-e. $\quad$ Asymptotes parallel to $y$-axis of the curve $y^{2}(a+x)=x^{2}(3 a-x)$ (CO3)
(a) $x=a$
(b) $x=-a$
(c) $x=3 a$
(d) $x=-3 a$

1-f. The nth derivative of $\cos (a x+b)$ is (CO 3)
(a) $a^{n} \cos (a x+b)$
(b) $a^{n} \cos \left(a x+b+\frac{n \pi}{2}\right)$
(c) $a^{n} \cos \left(a x+b+\frac{n \pi}{4}\right)$
(d) None of these

1-g. Percentage error in the area of a rectangle when an error of +1 percent is made in measuring its length and breadth is given by (CO4)
(a) $4 \%$
(b) $5 \%$
(C) $2 \%$
(d) $6 \%$

1-h.
If $u=x(1-y), v=x y$ then the value of the Jacobian $\frac{\partial(u, v)}{\partial(x, y)}$ is (CO4)
(a) $7 x$
(b) $3 x$
(c) $x$
(d) $4 x$

1-i. If out of 10 selected students for an examination, 3 were of 20 years, age, 4 of 21 and 3 of 22 years, the average age of the group is (CO5)
(a) 22 years
(b) 21 years
(c) 21.5 years
(d) 20 years

1-j. Missing terms in the series $0,7,26,63,124,--$ is (CO5)
(a) 210
(b) 215
(c) 211
(d) 224

## 2. Attempt all parts:-

2.a. For what value of ' $x$ ', the eigen values of of the given matrix $A$ are real
$A=\left[\begin{array}{ccc}10 & 5+i & 4 \\ x & 20 & 2 \\ 4 & 2 & -10\end{array}\right]$.. (CO1)
2.b. Show that the three vectors (1, 1, -1), (2,-3,5) and ( $-2,1,4$ ) of $R^{3}$ are linearly independent. (CO2)
2.c. Find the nth derivative of $y=\frac{1}{(2 x+3)(3 x-1)}$.(CO3)
2.d. Find the stationary points of $f(x, y)=5 x^{2}+10 y^{2}+12 x y-4 x-6 y+1$. (CO4)
2.e. If in a certain code "RANGE" is coded as 12345 and "RANDOM" is coded as 123678. Then find the code for the word "MANGO". (CO5)

## SECTION B

## 3. Answer any five of the following:-

3-a.
Find the rank of matrix by reducing it to normal form $\left[\begin{array}{cccc}1 & 2 & 1 & 0 \\ -2 & 4 & 3 & 0 \\ 1 & 1 & 2 & -8\end{array}\right]$ (CO1)
3-b. Test the consistency of system of equation 6 $10 y+3 z=0,3 x+3 y+z=0,2 x-3 y-z=5, x+2 y=4$. (CO1)

3-c. Show that the vectors $(0,1,1),(1,0,1)$ and $(1,1,0)$ form a basis of $R^{3}$. (CO2) 6
3-d. Prove that the set $S=\{(1,3,-1), 2,7,-3),(4,8,-7)\}$ spans $R^{3}$. (CO2)
3.e. If $\mathbf{u}=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x+y}\right)$ then find the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$.(CO3)
3.f. Examine the function $f(x, y)=y^{2}+4 x y+3 x^{2}+x^{3}$ for extreme values. (CO4)
3.g. Water tax is increased by $20 \%$ but its consumption is decreased by $20 \%$. Then find the increase or decrease in the expenditure of the money. (CO5)

## SECTION C

## 4. Answer any one of the following:-

4-a.
Find the eigen values and eigen vectors of the matrix $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$. (CO1)
4-b.

$$
A=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \text { and hence } 10
$$ compute $\mathrm{A}^{-1}$. Also evaluate $A^{6}-6 A^{5}+9 A^{4}-2 A^{3}-12 A^{2}+23 A-9 I$.. (CO1)

## 5. Answer any one of the following:-

5-a. Show that the mapping
$T: V_{2}(R) \rightarrow V_{3}(R)$ defined as $T(a, b)=(a+b, a-b, b)$ is a
linear transformation from $\mathrm{V}_{2}(\mathrm{R})$ into $\mathrm{V}_{3}(\mathrm{R})$. Find the range, rank, null-space and nullity of T. (CO2)

5-b. Define inner product space. Then show
that 10 $u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right)$ in $R^{2}$ defined by $\langle u, v\rangle=4 u_{1} v_{1}+5 u_{2} v_{2}$ is inner product space. (CO2)

## 6. Answer any one of the following:-

6-a. If $u=f(r)$, where $r=\sqrt{x^{2}+y^{2}}$, prove that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)
$$

# 6-b. If $y=e^{a \sin ^{-1} x}$, then prove that <br> $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$ 

(CO3)

## 7. Answer any one of the following:-

7-a. If $u, v, w$ are the roots of the cubic equation $(\lambda-x)^{3}+(\lambda-y)^{3}+(\lambda-z)^{3}=0$ in $\lambda$ then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.(CO4)

7-b.
Expand $e^{x} \cos y$ in the powers of $(x-1)$ and $\left(y-\frac{\pi}{4}\right)$ upto the third degree 10 terms. (CO4)

## 8. Answer any one of the following:-

8 -a. (i) If the price of an item is decreased by $10 \%$ and then increased by $10 \%$, then 10 find the net effect on the price of the item. (CO5)
(ii) The average marks obtained by 40 students of a class is 86 . If the 5 highest marks are removed, the average reduced by one marks. Find the average marks of the top 5 students. (CO5)
(iii) Find the missing terms: $1,2,6,7,21,22,66,67, ?(C O 5)$

8-b. (i) Pankaj purchased an item for Rs. 7500 and sold it at the gain of $24 \%$. From that amount he purchased another item and sold it at the loss of $20 \%$. What is his overall gain/loss? (CO5)
(ii) The average of runs of a cricket player of 20 innings was 32 . How many runs must he make in his next innings so as to increase his average of runs by 4 ? (CO5)
(iii) In certain code language, ROCK=47 and LATE=38. Find the code for FOOL. (CO5)

