Page 1 of 4

Subject Code:- ACSML0602

Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: VI - THEORY EXAMINATION (2022-2023)

Subject: Deep Learning

Time: 3 Hours

Printed Page:-

General Instructions:

IMP: *Verify that you have received the question paper with the correct course, code, branch etc.*

1. *This Question paper comprises of* **three Sections -A, B, & C.** *It consists of Multiple Choice Questions (MCQ's)* & *Subjective type questions.*

2. Maximum marks for each question are indicated on right -hand side of each question.

3. Illustrate your answers with neat sketches wherever necessary.

4. Assume suitable data if necessary.

5. *Preferably, write the answers in sequential order.*

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

- 1-a. A single iteration over the entire training set is called as an (CO1)
 - (a) Epoch

(b) clock

(c) cycle

(d) None of the above

1-b. PCA stands for (CO1)

- (a) peer component analysis
- (b) principal component analysis
- (c) power component analysis
- (d) None of the above
- 1-c. Neural network that has only one hidden layer between the input and output. 1 (CO2)
 - (a) Deep neural network
 - (b) Feed-forward neural networks

20

1

1

Max. Marks: 100

(c) Recurrent neural networks

(d) Shallow neural network

1-d. Assume a simple MLP model with 3 neurons and inputs=1,2,3. The weights of 1 the input neurons are 4,5, and 6 respectively. Assume the activation function is a linear constant value of 3. What will be the output? (CO2)

1

1

1

1

1

June

- (a) 64
- (b) 128
- (c) 32
- (d) 96

1-e. Identify the type of learning in which labeled training data is used. (CO3)

- (a) Semi unsupervised learning
- (b) Supervised learning
- (c) Reinforcement learning
- (d) Unsupervised learning
- 1-f. In an Unsupervised learning (CO3)
 - (a) Specific output values are given
 - (b) Specific output values are not given
 - (c) No Specific input values are given
 - (d) Neither inputs nor outputs are given
- - (a) Kohonen SOM
 - (b) Radial Basis Function Network
 - (c) Multilayer Perceptron
 - (d) All of the above
- 1-h. The model that contains internal memory is (CO4)
 - (a) Convolutional Neural Networks (ConvNots)
 - (b) Capsule Neural Networks (CapsNots)
 - (c) RNN (Recurrent Neural Network)
 - (d) Simple ANN
- 1-i. Autoencoders are trained using ______. (CO5)
 - (a) Feed forward
 - (b) feed back ward
 - (c) back propogation

	·	
	(d) They do not require Training	
1-j.	Which of the following is correct about Dropout? (CO5)	1
	(a) Dropout is a regularization technique	
	(b) Dropout solves vanishing gradient problem	
	(c) Dropout solves gradient problem	
	(d) none of these	
2. Attempt all parts:-		
2.a.	Elaborate unstructured data (CO1)	2
2.b.	Define Convolution. (CO2)	2
2.c.	Explain Padding in detection. (CO3)	2
2.d.	Define one-to-one RNN . Give one example . (CO4)	2
2.e.	Explain about Bottleneck in autoencoder. (CO5)	2
	SECTION B	30
3. Answer any <u>five</u> of the following:-		
З-а.	Discuss bias and variance trade off. (CO1)	6
3-b.	write a short note on p-value and precision recall. (CO1)	6
3-c.	Describe computational graph in Deep Learning. (CO2)	6
3-d.	Why CNN is most preferred for the image data? (CO2)	6
3.e.	Draw and explain the architecture of convolutional network. (CO3)	6
3.f.	Define RNN and its uses. (CO4)	6
3.g.	Describe the approach used in Denoising Autoencoders. (CO5)	6
	SECTION C	50
4. Answer any <u>one</u> of the following:-		
4-a.	Explain different ways of representing the data in the neural network system. (CO1)	10
4-b.	Generate OR function using McCulloch –pitts neuron model with threshold T=3 , w1=3,and w2=3. (CO1)	10
5. Answer any <u>one</u> of the following:-		
5-a.	Explain the use of the convolution layer in CNN with example. (CO2)	10
5-b.	Explain deep convolutional Q-learning. (CO2)	10
6. Answer any <u>one</u> of the following:-		
6-a.	Explain Filtering, Stride and Padding in Convolutional Neural Network. (CO3)	10

6-b. Discuss the motivation behind using auxiliary loss function in Inception 10 network. (CO3)

7. Answer any one of the following:-

7-a. Define the difference between deep RNN and bi-directional RNNs. (CO4) 10

10

7-b. Explain in following in details i) LSTM, ii) ISTM (CO4)

8. Answer any one of the following:-

- 8-a. Give the differences between an Autoencoder and PCA in Terms of 10 Dimensionality Reduction. (CO5)
- 8-b. Explain the differences between overcomplete and undercomplete 10 autoencoders. (CO5)

2022-23 Jan-June