Subject Code:- ABT0601

Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: VI - THEORY EXAMINATION (2022-2023)

Subject: Bioseparation Engineering

Time: 3 Hours

Printed Page:-

General Instructions:

IMP: *Verify that you have received the question paper with the correct course, code, branch etc.*

1. This Question paper comprises of **three Sections -A, B, & C.** It consists of Multiple Choice Questions (MCQ's) & Subjective type questions.

2. Maximum marks for each question are indicated on right -hand side of each question.

3. *Illustrate your answers with neat sketches wherever necessary.*

4. Assume suitable data if necessary.

5. *Preferably, write the answers in sequential order.*

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

- 1-a. Which is a reducing sugar? (CO1)
 - (a) Galactose
 - (b) Gluconic acid
 - (c) Sucrose
 - (d) β-methyl galactosidase
- 1-b. Which of the following is the reason for increased surface area for oxygen 1 transfer in a spargerd bioreactor ? (CO1)
 - (a) Bubbles
 - (b) Turbidity
 - (c) Cells
 - (d) Protein
- 1-c. Which of the following colloids are solvent hating? (CO2)
 - (a) lyophilic
 - (b) lyophobic

1

1

20

Max. Marks: 100

- (c) hydrophilic
- (d) none of these
- 1-d. Which of the following is not an application of transport in membranes? (CO2) 1

1

1

1

- (a) Microfiltration
- (b) Reverse osmosis
- (c) Dialysis
- (d) Fractional distillation
- 1-e. The anticodon is a structure on (CO3)
 - (a) RNA
 - (b) ibosome
 - (c) mRNA
 - (d) tRNA
- 1-f. Which of the following materials are used for high temperature 1 applications? (CO3)
 - (a) Polypropylene
 - (b) Cllulose acetate
 - (c) polylactic acid
 - (d) Ceramic
- 1-g. Which principle is behind filtration medium resistance? (CO4)
 - (a) Darcy's law
 - (b) Henry's law
 - (c) Dalton's law
 - (d) Newton's law
- 1-h. In which type of chromatography, the stationary phase held in a narrow tube 1 and the mobile phase is forced through it under pressure? (CO4)
 - (a) Column chromatography
 - (b) Planar chromatography
 - (c) Liquid chromatography
 - (d) Gas chromatography
- 1-i. How to initiate crystallization? (CO5)
 - (a) Adding seed crystals
 - (b) Adjusting temperature
 - (c) Adjusting pressure

	(d) Adjusting concentration	
1-j	j. What are the factors that affect crystallization seedling? (CO5)	1
	(a) Temperature and pressure	
	(b) Polymorphism of the crystals and pressure	
	(c) Crystal size distribution and temperature	
	(d) Crystal size distribution and polymorphism of the crystals	
2.	Attempt all parts:-	
2.8	a. What are the 3 types of separation? (CO1)	2
2.1	b. What is the source of adsorption? (CO2)	2
2.0	c. What is the detergent method of cell disruption? (CO3)	2
2.0	d. What are chromatography results called? (CO4)	2
2.0	e. What are the impurities in recrystallization? (CO5)	2
	SECTION B	30
3.	Answer any <u>five</u> of the following:-	
3-8	a. Which small tube is used in centrifuge? (CO1)	6
3-	b. What are the advantages of centrifuge? (CO1)	6
3-0	c. What are the applications of membrane separation? (CO2)	6
3-	d. What are the two main factors that affect membrane structure? (CO2)	6
3.0	e. What is an example of physical cell disruption? (CO3)	6
3.1	f. What is the biochemical application of column chromatography? (CO4)	6
3.9	g. What are the important factors in crystallization? (CO5)	6
	SECTION C	50
4.	Answer any <u>one</u> of the following:-	
4-8	a. What factors does filtration depend on? (CO1)	10
4-	b. What factors should be considered during cell disruption? (CO1)	10
5.	Answer any <u>one</u> of the following:-	
5-6	a. Which molecules would move farthest during gel electrophoresis and why? (CO2)	10
5-	b. Why RNA extraction is comparetively difficult from DNA extraction? (CO2)	10
6.	Answer any <u>one</u> of the following:-	
6-	a. What is the liquid shear method of cell disruption? (CO3)	10
6-	b. State various filtration methods for the separation for solid liquid	10

separation. (CO3)

7. Answer any <u>one</u> of the following:-

- 7-a. Define retention time and asymmetric peak in Chromatography? (CO4) 10
- 7-b. Discuss various modes of separation of chromatography. Explain affinity 10 chromatography with its industrial applications. (CO4)

8. Answer any <u>one</u> of the following:-

- 8-a. Name the different steps involved in the process of crystallization. (CO5) 10
- 8-b. Discuss the importance and methods of drying with suitable examples. (CO5) 10

2022 Jan-June