Subject Code: ACSE0501

Roll No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech.

(SEM- V THEORY EXAMINATION(2022-2023)

Subject Design & Analysis of Algorithms

Time: 3Hours

General Instructions:

1. Attempt all parts:-

IMP: Verify that you have received question paper with correct course, code, branch etc.

- 1. This Question paper comprises of three Sections -A, B, & C. It consists of Multiple Choice Questions (MCQ's) & Subjective type questions.
- 2. Maximum marks for each question are indicated on right hand side of each question.
- 3. Illustrate your answers with neat sketches wherever necessary.
- 4. Assume suitable data if necessary.
- 5. Preferably, write the answers in sequential order.
- 6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION – A

1-a.	The worst case runtime of linear search(recursive) algorithm (CO1)	1
1-b.	 a) O(n) b) O(logn) c) O(n²) d) O(nx) The recurrence relation for the linear search recursive algorithm (CO1) 	1
1-c.	a)T(n-2)+c b) 2T(n-1)+c c) T(n-1)+c d) T(n+1)+c Which of the following is the most widely used external memory data structure?	1
	(CO2)	
1-d.	 a)AVL Tree b) B-Tree c) Red Blac Tree d) Binomial Heap What are the operations that could be performed in O(log n) time complexity by red- 	1
	black tree? (CO2)	
	a) insertionb) deletion,	

Page 1 of 4

, Lucknow)

Max. Marks:100

20

	c) finding predecessord) All	
1-e.	Which of the following sorting algorithm is stable? (CO3)	1
1-f.	 a) Selection sort b) Quick sort c) Binary insertion sort d) Heap sort Worst case of quick sort is? (CO3) 	1
	a)Elements are sorted	
1-g.	 b) Elements are sorted in reverse order c) Elements are random order sorted d) Elements are unsorted The Data structure used in standard implementation of Breadth First Search is(CO4) 	1
	a) Stack	
	b) Queue	
	c) Linked List	
	d) Tree	
1-h.	In Depth First Search, how many times a node is visited? (CO4)	1
	a) Onceb) Twicec) Equivalent to number of indegree of the noded) Thrice	
1-i.	Basic principle in Rabin Karp algorithm? (CO5)	1
1-j.	 a)Hashing b) Sorting c) Augmenting d) Dynamic programming Which of the following are the examples of NP-complete Problem (CO5) 	1
	a) Knapsack problemb) Hamiltonian path problem.c) Subset sum problemd) All above	
2. Attemp	pt all parts:-	
2.a.	List the fundamental steps involved in algorithmic problem solving? (CO1)	2
2.b.	Define binomial heap. (CO2)	2
2.c.	Briefly explain the Prim's algorithm (CO3)	2
2.d.	Define principle of optimality (CO4)	2
2.e.	Define P, NP and NP Complete in decision problem (CO5)	2
	SECTION – B	
3. Answe	er any <u>five</u> of the following-	
3-a.	Explain the concepts of Counting sort and analyse its complexity with suitable $(CO1)$	6
2.1	example.(CO1)	_
3-b.	Discuss Insertion sort algorithm and analyse it with an example.(CO1)	6

- 3-c. Insert the nodes 15, 13, 12, 16, 19, 23, 5, 8 in empty Red Black tree and 6 delete in the reverse order of insertion.(CO2) Discuss the union operation of Binomial heap with an example. (CO2) 3-d. 6 Consider following instance for simple knapsack problem. Find the solution using 3-е. 6 greedy method. (CO3) N=8P= {11,21,31,33,43,53,55,65} $W = \{1, 11, 21, 23, 33, 43, 45, 55\}$ M=110 3-f. What is backtracking? Write general iterative algorithm for backtracking. (CO4) 6 What is travelling salesman problem? Find the solution of following travelling 6 3-g. salesman. (CO5) Cost matrix =20 30 10 11 ∞ 16 4 2 15 ∞ 3 5 2 4 ∞ 3 19 6 18 ∞ 7 16 16 4 ∞ SECTION - C 4. Answer any one of the following-What is heap sort? Apply heap sort algorithm for sorting 1,2,3,4,5,6, 7,8,9, 10. 4-a. 10 Also deduce time complexity of heap sort.(CO1) Solve the given recurrence T(n) = 4T(n/4) + n. Explain the Growth of an functions 4-b. 10 with an example.(CO1) 5. Answer any one of the following-Explain insertion in Red Black Tree. Show steps for inserting 1, 2, 3. 4, 5, 6, 7, 8 5-a. 10 ,9 into empty RB tree.(CO2) 5-b. Discuss the Fibonacci heap extract min operation on given example. (CO2) 10 min[H]
- 6. Answer any one of the following-
- 6-a. Discuss knapsack problem with respect to dynamic programming approach. Find 10 the optimal solution for given solution for given problem, w (weight set) = {5, 10. 15,20} and W (Knapsack size) = 25, V(value set)={50, 60 120, 100}.(CO3)

52

6-b. Using Strassen's matrix multiplication multiply the following matrices. (CO3) 10

$$\mathbf{A} = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$$

- 7. Answer any one of the following-
- 7-a. Discuss the matrix chain multiplication algorithm with the example using four 10 matrices.(CO4)

7-b.	Write an algorithm for solving n-queen problem. Show the solution of 4 queen	10
	problem using backtracking approach.(CO4)	
8. Answe	r any <u>one</u> of the following-	
8-a.	Prove the three coloring problem is NP Complete. (CO5)	10
8-b.	What is string matching algorithm? Explain Rabin-Karp method with	10

Page 4 of 4

examples.(CO5)