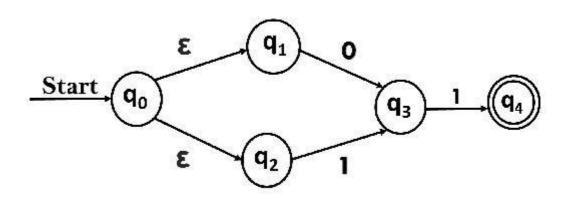
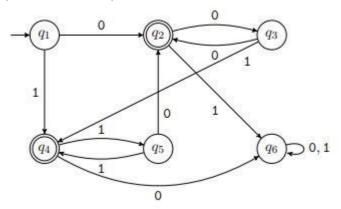
Printed Page:- 05	Subject Code:- AMICSE0404	
	Roll. No:	
NOIDA INICTITUTE OF ENGINEEDIN	NC AND TECHNIQUOCY CREATER NOTRA	
NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow)		
	.Tech (Integrated)	
	(AMINATION (2022-2023)	
	omata and Formal Languages	
Time: 3 Hours	Max. Marks: 100	
General Instructions:		
IMP: Verify that you have received the question	n paper with the correct course, code, branch etc.	
1. This Question paper comprises of three S	Sections -A, B, & C. It consists of Multiple Choice	
Questions (MCQ's) & Subjective type questions.		
2. Maximum marks for each question are indic	ated on right -hand side of each question.	
3. Illustrate your answers with neat sketches wi	herever necessary.	
4. Assume suitable data if necessary.		
5. Preferably, write the answers in sequential o		
	ritten material after a blank sheet will not be	
evaluated/checked.		
SECT	TION A 20	
1. Attempt all parts:-		
1-a. Can a DFA simulate NFA? (CO1)	1	
(a) NO		
(b) YES		
(c) Sometimes		
(d) Depends on NFA		
1-b. Finite State Machine can recognize	e (CO1) 1	
	· ((() 1)	
(a) Any Grammar		
(a) Any Grammar (b) Only CFG		
(a) Any Grammar (b) Only CFG (c) Any unambiguous Gramn		
(a) Any Grammar (b) Only CFG		
(a) Any Grammar (b) Only CFG (c) Any unambiguous Grammar (d) Only Regular Grammar 1-c. Consider the following regular exp	mar	
(a) Any Grammar (b) Only CFG (c) Any unambiguous Grammar (d) Only Regular Grammar 1-c. Consider the following regular exp R = (ab + abb)* bbab	mar	
(a) Any Grammar (b) Only CFG (c) Any unambiguous Grammar (d) Only Regular Grammar 1-c. Consider the following regular exp	mar	

	(b) ababbabbab	
	(c) ababbbbab	
	(d) abbabbbab	
1-d.	The regular expression (a + b)* denotes all strings (CO2)	1
	(a) with zero or more instances of a and b both simultaneously	
	(b) with one or more instances of a and b	
	(c) any combination of a's and b's including null string.	
	(d) None of these	
1-e.	Every CFG can be transfered into equivalent : (CO3)	1
	(a) Greiback Normal Form	
	(b) CNF	
	(c) Either GNF or CNF	
	(d) All of mention	
1-f.	CFG is not closed under: (CO3)	1
	(a) Union	
	(b) Kleene Star	
	(c) Complementation	
	(d) Product	
1-g.	A push down automata can represented using: (CO4)	1
	(a) Transition graph	
	(b) Transition table	
	(c) ID	
	(d) All of the mentioned	
1-h.	The transition a Push down automaton makes is additionally dependent upon	1
	the: (CO4)	
	(a) State	
	(b) Unconsumed input	
	(c) Stack content	
	(d) All of the mentioned	
1-i.	Turing Machine consist of : (CO5)	1
	(a) Input Tape	
	(b) Blank Symbol	
	(c) Tape head	

(d) All of these A turing machine that is able to simulate other turing machines: 1 1-j. (CO5) (a) Nested Turing Machine (b) Universal Turing Machine (c) Counter Turing Machine (d) None of the mention 2. Attempt all parts:-2.a. Explain the term Alphabets, Strings, Language in Finite Automata. 2 (CO1) 2 2.b. Describe the definition of Regular Expression. (CO2) 2.c. Explain the Mathematical description of Context Free Grammar. 2 (CO3) 2.d. Describe the explanation for the Moves of Pushdown Automata. (CO4)2 Explain Church's Thesis. 2 2.e. (CO5)30 **SECTION B** 3. Answer any five of the following:-Design Finite Automata that accepts set of strings containing exactly four 1's in 3-a. 6 every string over alphabet {0,1}. (CO1) 3-b. Convert the given Moore machine into its equivalent Mealy machine. (CO1) 6 b a $q_{1}/1$ b Write the regular expression for the language $L = \{a^n b^m : (n+m) \text{ is even } \}$ 3-c. 6 (CO2) Prove that $L = \{a^n b^n ab^{n+1} \text{ for } n = 1,2,3, \dots \}$ is not regular. 3-d. (CO2) 6 3.e. If CFG (G) is S ----> SbS / a , Show that G is ambigous. (CO3) 6 Design a PDA for the language $L=\{0^n 1^{2n}, n>0\}$ 3.f. (CO4) 6 3.g. Design a Turing Machine which recognize the language of Regular Expression (6 01*0). (CO5) **SECTION C** 50

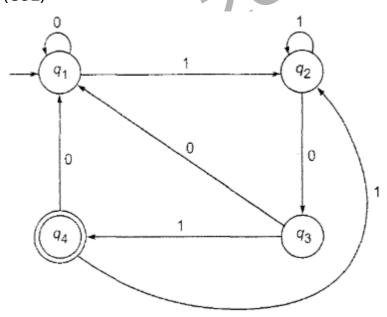

(CO1)

10


Convert epsilon-NFA to NFA without epsilon.

4. Answer any one of the following:-

4-a.



4-b. For the following DFA, determine the classes of equivalent states, and use them 10 to provide the equivalent minimum-state DFA. (CO1)

5. Answer any one of the following:-

- 5-a. Write down the statement of Pumping Lemma for Regular Languages. also 10 Describe the Closure Properties of Regular Languages. (CO2)
- 5-b. Prove Ardens's Theorem. Find the regular expression corresponding to Fig. 10 (CO2)

6. Answer any <u>one</u> of the following:-

6-a. Consider the grammar (CO3) 10
S ---> aB / bA

A ----> aS / bAA / a B ---> bS / aBB / b For the string aaabbabbba, find (i) The left most derivation and left most derivation tree (ii) The right most derivation and right most derivation tree 6-b. Describe the following: 10 (CO3)(i) Eliminating the Use Less Symbols in CFG (ii) Removal of Unit Production in CFG (iii) Removal of Null - Production in CFG Find the Reduced Grammar that is equivalent to the CFG given below: S ---> AB A ---> a B ---> C / b C ---> D D ----> E E ----> a 7. Answer any one of the following:-7-a. Describe the Definition of Pushdown Automata. Is PDA more powerful than 10 Finite Automata? if Yes than why? also Design PDA for Language $L = \{a^{m+n}b^mc\}$ n / m, n > 1(CO4)7-b. Design a PDA for the following CFG: (CO4) 10 S ----> E S ----> SS S ----> (S) Show the transition relation on string () () for constructed PDA. 8. Answer any one of the following:-8-a. Explain Instantaneous description of Turing Machine. Design the Turing 10 Machine for: (CO5)(i) 1's Complement of any string (ii) 2's Complement of any string 8-b. Explain any two of the following: (CO5)10 (i) Universal Turing Machine (ii) Recursively Enumerable Language (iii) Halting Problem (iv) Post's Correspondence Problem