Printed Page:-

Subject Code:- AMBABI0312

Roll. No:

			1 1				
			1 1				

Max. Marks: 100

20

1

1

1

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

M.B.A.

SEM: III - THEORY EXAMINATION (2022 - 2023)

Subject: Machine Learning & Artificial Intelligence

Time: 3 Hours

General Instructions:

IMP: Verify that you have received the question paper with the correct course, code, branch etc.

1. This Question paper comprises of three Sections -A, B, & C. It consists of Multiple Choice Questions

(MCQ's) & Subjective type questions.

2. Maximum marks for each question are indicated on right -hand side of each question.

- 3. Illustrate your answers with neat sketches wherever necessary.
- 4. Assume suitable data if necessary.
- 5. Preferably, write the answers in sequential order.

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

1

1

Data used to build a data mining model. [CO1]

- (a) validation data
- (b) training data
- (c) test data
- (d) hidden data

1 PCA is a ____.[CO1]

- (a) Non linear method
- (b) Linear method
- (c) Continuous method
- (d) Repeated method

A decision tree can be used to build models for _____[CO2]

- (a) Classification
- (b) Regression
- (c) Both

(d) None	
Pre-pruning the decision tree may result in[CO2]	1
(a) Underfitting	
(b) overfitting	
(c) Underfitting & Overfitting	
(d) None of the above	
Agglomerative clustering falls under which type of clustering method.[CO3]	1
(a) partition	
(b) hierachical	
(c) density	
(d) model	
. K means and K-medioids are example of which type of clustering method.[CO3]	1
(a) partition	
(b) hierachical	
(c) density	
(d) model	
Artificial Intelligence has its expansion in the following application. [CO4]	1
(a) Planning and Scheduling	
(b) Game Playing	
(c) Robotics	
(d) All of the above	
Explain the name of the computer program that simulates the thought processes of human	1
beings. [CO4]	
(a) Human logic	
(b) Expert reason	
(c) Expert system	
(d) Personal information	
LIFO is where as FIFO is [CO5]	1
(a) Stack, Queue	
(b) Queue, Stack	

(c) Priority Queue, Stack

(d) Stack. Priority Queue

1	A search algorithm takes	as an input and returns	as an output. [CO5] 1				
	(a) Input, output						
	(b) Problem, solution						
	(c) Solution, problem						
	(d) Parameters, sequence of a	ctions					
2. Attempt	all parts:-						
2.a.	Discuss the steps involved in KDD process [CO1]						
2.b.	List out the two differences between Supervised and unsupervised learning.[CO2]						
2.c.	Explain Euclidean distance and manh	atten distance.[CO3]	2				
2.d.	Define an Agent. [CO4]		2				
2.e.	Explain Hill Climbing Algorithm. [C	O5]	2				
	SEC	CTION B	30				
3. Answer	any five of the following:-						
3	Mention the various types of machine	e learning techniques.[CO1]	6				
3	Explain principal component analysis in details.CO1]						
3	Compare Entropy and Information Gain and Gain in ID3 with an example.[CO2]						
3	Differentiate between classification and regression with example.[CO2]						
3.e.	Explain how association rule mining helps in Market-basket analysis.[CO3]						
3.f.	Define Strong AI, and how is it different from the Weak AI. [CO4]						
3.g.	Explain the minimax algorithm along with the different terms. [CO5]						
	SEC	CTION C	50				
4. Answer	any one of the following:-						
4	a) Describe the Feature Subset	Selection.b) Illustrate the Da	ta Transformation by 10				

- Normalization.[CO1]
- 4 10 Suppose a group of 12 sales price records has been sorted as follows:5,10,11,13,15,35,50,55,72,92,204,215. Partition them into three bins by each of the following methods:equal-frequency(equal-depth) partitioning, equal-width partitioning ,Clustering[CO1]

10

- 5. Answer any one of the following:-
- 5 Define Bagging & boosting and its impact on bias and variance.[CO2]

Consider the following set of training examples: (a) What is the entropy of this collection of 10 training examples with respect to the target function classification? (b)What is the information gain of a2 relative to these training examples? [CO2]

INSTANCE	A 1	A.2
CLASSIFICATION	AI	AZ
1	+ T	Т
2	+T	Т
3	-T	F
4	+F	F
5	-F	Т
6	-F	Т

6. Answer any one of the following:-

5

6 Define clustering and also differenciate between k-mean and k-medoid clustering.[CO3] 10

6 Give any two types of association rules with example. Trace the results of using the Apriori 10 algorithm on the grocery store example with support threshold 2 and confidence threshold 60 %. Show the candidate and frequent itemsets for each database scan. Enumerate all the final frequent itemsets. Also indicate the association rules that are generated.[CO3]

Transaction_ID	Items
T1	HotDogs, Buns, Ketchup
T2	HotDogs, Buns
Т3	HotDogs, Coke, Chips
T4	Chips, Coke
T5	Chips, Ketchup
Т6	HotDogs, Coke, Chips

7. Answer any one of the following:-

7	Explain computer vision in parlance to the artificial intelligence. [CO4]	10
7	Describe PEAS with example [CO4]	10
8. Answer	any <u>one</u> of the following:-	
8	Explain difference between Greedy Best First Search and Uniform Cost search. [CO5]	10

8 Explain adversarial Search. Which type of problem is solved through adversarial Search. 10 [CO5]

Page 4 of 4