Printed Page:-

Subject Code:- ACSE0306

Roll. No:

Max. Marks: 100

20

1

1

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: III - THEORY EXAMINATION (2022 - 2023)

Subject: Discrete Structures

Time: 3 Hours

General Instructions:

IMP: Verify that you have received the question paper with the correct course, code, branch etc.

1. This Question paper comprises of three Sections -A, B, & C. It consists of Multiple Choice Questions

(MCQ's) & Subjective type questions.

2. Maximum marks for each question are indicated on right -hand side of each question.

- 3. Illustrate your answers with neat sketches wherever necessary.
- 4. Assume suitable data if necessary.
- 5. Preferably, write the answers in sequential order.

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

1. Attempt all parts:-

1-a. The complement of the set A is _____(CO1)

- (a) A B
 (b) U A
 (c) A U
- (d) B A
- 1-b. Determine the number of ways of choosing a cricket team (consists of 11 players) out of 18 1 players if a particular player is never chosen. (CO1)
 - (a) 12798
 - (b) 22800
 - (c) 31824
 - (d) 43290

1-c. _____ matrices do not have multiplicative inverses. (CO2)

- (a) non-singular
- (b) singular

- (c) triangular
- (d) inverse
- 1-d. Lagrange's theorem specifies _____. (CO2)
 - (a) the order of group is finite
 - (b) the order of the semigroup is added to the order of the group
 - (c) the order of the subgroup divides the order of the finite group
 - (d) the order of cyclic group is infinite
- 1-e. In which of the following relations every pair of elements is comparable. (CO3)
 - (a) **≤**
 - (b) !=
 - (c) >=
 - (d) ==
- 1-f. A _____ has a greatest element and a least element which satisfy 0<=a<=1 for every a in 1 the lattice(say, L). (CO3)
 - (a) semilattice
 - (b) join semilattice
 - (c) bounded lattice
 - (d) meet semilattice
- 1-g. Let P: We should be honest., Q: We should be dedicated., R: We should be overconfident. 1
 Then 'We should be honest or dedicated but not overconfident.' is best represented by.
 (CO4)
 - (a) $\sim P V \sim Q V R$
 - (b) $P \land \sim Q \land R$
 - (c) P V Q \land R
 - (d) P V Q $\wedge \sim R$
- 1-h. The number of logical connectives are (CO4)
 - (a) 2 (b) 3
 - (c) 4
 - (0) +
 - (d) 5
- 1-i. A graph which consists of disjoint union of trees is called (CO5)

1

1

1

	(a) bipartite graph	
	(b) forest	
	(c) caterpillar tree	
	(d) labeled tree	
1-j.	A graph containing self loop and parallel edges are called (CO5)	1
	(a) Simple graph	
	(b) Multigraph	
	(c) Regular graph	
	(d) Path	
2. Attemp	t all parts:-	
2.a.	Define: (i) Equal set (ii) Subset (CO1)	2
2.b.	Show that $(R - \{1\}, *)$ where the operation is defined as $a*b = a + b$ –ab is an abelian group. (CO2)	2
2.c.	Define totally ordered set with an example. (CO3)	2
2.d.	Write rules of inference for i) Modus tollens ii) Disjunctive syllogism (CO4)	2
2.e.	Explain bipartite and complete bipartite graph with suitable example. (CO5)	2
	SECTION B	30
3. Answer	any <u>five</u> of the following:-	
3-a.	Differentiate linear homogeneous recurrences with linear non-homogeneous recurrence relations. (CO1)	6
3-b.	Determine whether each of these functions is a bijection from R to R. a) $f(x) = 2x + 1$ b) $f(x) = x2 + 1$ (CO1)	6
3-c.	Show that the set of all positive rational numbers forms an abelian group under the composition * defined by a * b = (ab)/2. (CO2)	6
3-d.	State and prove Lagrange's Theorem. (CO2)	6
3.e.	Is the "divides" relation on the set of positive integers transitive? What is the reflexive and symmetric closure of the relation? $R = \{(a, b) a > b\}$ on the set of positive integers? (CO3)	6
3.f.	Let S(x) be the predicate "x is a student," F (x) the predicate "x is a faculty member," and A(x, y) the predicate "x has asked y a question," where the domain consists of all people associated with your school. Use quantifiers to express each of these statements.	6

- a) Lois has asked Professor Michaels a question.
- b) Every student has asked Professor Gross a question.
- c) Every faculty member has either asked Professor
- Miller a question or been asked a question by Professor Miller.
- d) Some student has not asked any faculty member a question. (CO4)
- 3.g. Discussan example of preorder, postorder & inorder traversal of a binary tree of your choice 6 with at least 12 vertices. (CO5)

4. Answer any one of the following:-

- 4-a. Define principle of duality wit example. Represent atleast 5 operations possible on Sets 10 using Venn Diagram with suitable example. (CO1)
- 4-b. What is composition of function. State difference between 'f o g' and 'g o f' with example. 10 (CO1)
- 5. Answer any one of the following:-
- 5-a. Explain cyclic group and prove that every cyclic group is abelian group but every abelian 10 group is not cyclic group. (CO2)
- 5-b. State about: (a) order of an element of a group with example. (b) Generating element in a 10 cyclic group with example. (c) Abelian group. (CO2)
- 6. Answer any one of the following:-
- 6-a. Concern the following poset $(\{1\},\{2\},\{4\},\{1,2\},\{1,4\},\{2,4\},\{3,4\},\{1,3,4\},\{2,3,4\}, \subseteq =)$, (1) 10 find the maximal element(2). Find the minimal elements. (3). Find all the upper bound of $(\{2\},\{4\})$ and the least upper bound if it exist. (CO3)
- 6-b. Explain different types of lattice. Show that Lattice is modular, distributive but not 10 complemented with example. (CO3)
- 7. Answer any one of the following:-
- 7-a. Let P (x) be the statement "x spends more than five hours every weekday in class," where 10 the domain for x consists of all students. Express each of these quantifications in English.
 (CO4)
 - a) $\exists x P(x)$,
 - b) $\forall x P(x)$,
 - c) $\exists x \neg P(x)$,
 - d) $\forall x \neg P(x)$.

7-b. Show that each of these conditional statements is a tautology by using truth tables. (CO4) 10

a) $(p \land q) \rightarrow p$, b) $p \rightarrow (p \lor q)$, c) $\neg p \rightarrow (p \rightarrow q)$, d) $(p \land q) \rightarrow (p \rightarrow q)$, e) $\neg (p \rightarrow q) \rightarrow p$ f) $\neg (p \rightarrow q) \rightarrow \neg q$

8. Answer any one of the following:-

- 8-a. Show that there does not exist a graph with 5 vertices with degrees 1, 3, 4, 2, 3 respectively. 10Also explain Define Graph coloring. What is its application? (CO5)
- 8-b. (a) Suppose a graph G contains two disctinct paths from vertex u to a vertex v. Show that G 10 has a cycle. (b) Find the number of connected graph with 4 vertices. Also draw the graph. (CO5)