Printed Page:-		Subject Code:- AMTCSE0101	
		Roll. No:	
		IG AND TECHNOLOGY, GREATER NOIDA	
		e Affiliated to AKTU, Lucknow)	
		1.Tech	
		AMINATION (2022 - 2023)	
Time at 1	•	a Structures and Algorithms	70
	3 Hours Instructions:	Max. Marks:	/(
		nanar with the correct course code branch etc	
	•	paper with the correct course, code, branch etc.	ici
	is (MCQ's) & Subjective type questions.	ections -A, B, & C. It consists of Multiple Cho	ice
		ated on right -hand side of each question.	
	ate your answers with neat sketches wh		
	ne suitable data if necessary.	refever freeessary.	
	ably, write the answers in sequential o	rder.	
•	,	itten material after a blank sheet will not	be
	d/checked.	,	
	SECT	TON A	15
1. Atten	npt all parts:-		
1-a.	Consider the usual algorithm f parentheses is balanced. The maxim	for determining whether a sequence of mum number of parentheses that appear on he algorithm analyzes: (()(())(()))? (CO1)	1
	(a) 1		
	(b) 2		
	(c) 3		
	(d) 4		
1-b.	What is/are the disadvantages of (CO2)	f implementing tree using normal arrays?	1
	(a) difficulty in knowing child	ren nodes of a node	
	(b) difficult in finding the par	ent of a node	

- (c) have to know the maximum number of nodes possible before creation of trees
- (d) difficult to implement
- 1-c. How many children does a binary tree have? (CO3)

	(a) 2	
	(b) any number of children	
	(c) 0 or 1 or 2	
	(d) 0 or 1	
1-d.	List the worst case complexity of binary search using recursion? (CO4)	1
	(a) O(n log n)	
	(b) O(log n)	
	(c) O(n)	
	(d) O(n2)	
1-e.	In what manner is a state-space tree for a backtracking algorithm constructed?	1
	(CO5)	
	(a) Depth-first search	
	(b) Breadth-first search	
	(c) Twice around the tree	
	(d) Nearest neighbour first	
2. Atter	npt all parts:-	
2.a.	Design a Stack that supports retrieving the min element in O(1). (CO1)	2
2.b.	Define Full Binary Tree. Write the maximum number of nodes in a full binary tree with depth 3. (CO2)	2
2.c.	Define different ways of representing a graph? Represent the following graph using those ways. (CO3)	2
2.d.	Differentiate between greedy method and dynamic programming. (CO4)	2
2.e.	State the applications of backtracking. (CO5)	2
	SECTION B	20
3. Answ	ver any <u>five</u> of the following:-	
3-a.	Write the applications of linked list. (CO1)	4
3-b.	Convert the following infix expression into postfix form (A+B)*(C+D)*E^F (CO1)	4
3-c.	What is a Binary Search Tree (BST)? Make a BST for the following sequence of numbers 45, 36, 76, 23, 89, 115, 98, 39, 41, 56, 69, 48 Traverse the tree in Preorder, Inorder and postorder. (CO2)	4
3-d.	Write the algorithm for insertion in the red-black tree. (CO2)	4

3.e. Using Prim's algorithm, determine minimum cost spanning tree for the 4 weighted graph shown below. (CO3)

- 3.f. Write an algorithm for sorting the array. Perform best and worst case time 4 complexity analysis with appropriate order notations. (CO4)
- 3.g. Discuss how deterministic algorithms are different from non-deterministic 4 algorithms with examples. (CO5)

SECTION C 35

4. Answer any one of the following:-

- 4-a. Write an algorithm to implement a stack of size N using an array. The elements 7 in the stack are to be integers. The operations to be supported are PUSH, POP and DISPLAY. Take into account the exceptions of Stack overflow and underflow (CO1)
- 4-b. Convert the following infix expression into a postfix expression i) 7 (((A/(B*C))+(D*E))-(A*C)) ii) $A^B*C-D+E/F/(G+H)$ (CO1)

5. Answer any one of the following:-

- 5-a. Construct AVL Tree for the following sequence of numbers- (CO2) 7 50, 20, 60, 10, 8, 15, 32, 46, 11, 48
- 5-b. Write the algorithm for Binomial Heaps Union. Apply Binomial Heaps Union on 7 these two binomial heaps: (CO2)

6. Answer any <u>one</u> of the following:-

6-a.	Explain Dijkstra's algorithm for finding the shortest path in a given graph. Find	
	the single source shortest path for the following graph (CO3)	
	Start A 10 12 1 5 5 C	
6-b.	Explain the Floyd Warshall algorithm with example. (CO3)	7
7. Answ	ver any <u>one</u> of the following:-	
7-a.	Describe the Travelling salesman problem & discuss how to solve it using Dynamic Programming? (CO4)	7
7-b.	Explain how will you construct optimal search tree with example. (CO4)	7
8. Answ	ver any <u>one</u> of the following:-	
8-a.	Explain P, NP, NP hard, and NP complete problems with examples. (CO5)	7
8-b.	Discuss Amortized Analysis in detail with examples. (CO5)	7