Printed Page:-

Subject Code:- AMCA0105
Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow)

MCA

SEM: I - THEORY EXAMINATION (2022-2023)

Subject: Discrete Mathematics

Time: 3 Hours
Max. Marks: 100

General Instructions:

IMP: Verify that you have received the question paper with the correct course, code, branch etc.

1. This Question paper comprises of three Sections -A, B, \& C. It consists of Multiple Choice Questions (MCQ's) \& Subjective type questions.
2. Maximum marks for each question are indicated on right -hand side of each question.
3. Illustrate your answers with neat sketches wherever necessary.
4. Assume suitable data if necessary.
5. Preferably, write the answers in sequential order.
6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

1-a. The cardinality of the set of odd positive integers less than 10 is \qquad . (CO1)
(a) 10
(b) 5
(c) 3
(d) 20

1-b. $\quad A=\{1,2,3\}$ which of the following function $f: A \rightarrow A$ does not have an inverse 1 function. (CO1)
(a) $\{(1,1),(2,2),(3,3)\}$
(b) $\{(1,2),(2,1),(3,1)\}$
(c) $\{(1,3),(3,2),(2,1)\}$
(d) $\{(1,2),(2,3),(3,1)$

1-c. The number of edges present in a complete graph having n vertices are \qquad . (CO2)
(a) $(n *(n+1)) / 2$
(b) $(n *(n-1)) / 2$
(c) n
(d) Information given is insufficient

1-d. A non empty set A is termed as an algebraic structure \qquad .(CO2)
(a) with respect to binary operation *
(b) with respect to ternary operation ?
(c) with respect to unary operation +
(d) with respect to unary operation -

1-e. A cyclic group is always \qquad .(CO3)
(a) abelian group
(b) monoid
(c) semigroup
(d) subgroup

1-f. A relation $(34 \times 78) \times 57=34 \times(78 \times 57)$ can have \qquad .(CO3)
(a) distributive
(b) associative
(c) commutative
(d) closure

1-g. Let P: I am in Delhi.; Q: Delhi is clean.; then $q \wedge p$ is \qquad .(CO4)
(a) Delhi is clean and I am in Delhi
(b) Delhi is not clean or I am in Delhi
(c) I am in Delhi and Delhi is not clean
(d) Delhi is clean but I am in Mumbai

1-h. A compound proposition that is neither a tautology nor a contradiction is called a/an (CO4)
(a) Contingency
(b) Equivalence
(c) Condition
(d) Inference

1-i. Determine the value of a_{2} for the recurrence relation $a_{n}=4 a_{n-1}+3$ with $a_{0} 1$ =3 (CO5)
(a) 66
(b) 65
(c) 64
(d) 63

1-j. The number of different six digit can be formed from the digits $4,5,2,1,8,9$ is
\qquad .(CO5)
(a) 480
(b) 360
(c) 720
(d) 840

2. Attempt all parts:-

2.a. Write an example of finite and infinite set in set builder form. (CO1) 2
2.b. Define degree of a vertex. (CO2) 2
2.c. Define commutative property in abelian group with an example.(CO3) 2
2.d. Prove the Demorgan`s law by truth table.(CO4) 2
2.e. In how many ways can the letters be arranged so that all the vowels come 2 together in the word "CRICKET".(CO5)

SECTION B

3. Answer any five of the following:-

3-a. In a class of 50 students, 28 play cricket and 36 play hockey. Use Venn- diagram to find the following. (CO1)
(i) Number of students play both the game.
(ii) Number of students play only Cricket.

3-b. Define bijective function with an example.(CO1)
3-c. Explain Inorder, Preorder and Postorder traversal operation on Binary tree with $\quad 6$ example. (CO2)

3-d. Make a binary search tree for the following sequence of numbers: 45, 36, 76, 23, 89,115, 98, 39, 41, 56, 69, 48. Traverse the tree in Preorder, Inorder and Postorder.(CO2)
3.e. Show that the set $R=\{0,2,4,6\}$ is a commutative ring under addition and 6
multiplication modulo 8. (CO3)
3.f. \quad Show that $p \rightarrow(q \rightarrow r)$ is logically equivalent to $(p \wedge q) \rightarrow r$. (CO4)6
3.g. \quad Solve the recurrence relation $2 Y_{n+2}-5 Y_{n+1}+2 Y_{n}=0$ then find the particular 6 solution $\mathrm{Y}_{\mathrm{O}}=0$ and $\mathrm{Y}_{1}=1$. (CO5)

SECTION C
4. Answer any one of the following:-
4-a. Let $A=\{1,2,3,5\}, F=\{(1,5),(2,1),(3,3),(5,2)$ and $G=\{(1,3),(2,1),(3,2),(5,5)\}$ find (I) FoG (II) GoF (III) FoF (IV) GoG. (CO1)
4-b. In a class of 50 students, it was found that 30 students read "The Hindu", 35 students read "Hindustan" and 10 read neither. Find the number of students read both: "The Hindu" and "Hindustan" newspapers. (CO1)

5. Answer any one of the following:-

5-a. Let $X=\{1,2,3,4,5,6\}$, then $/$ is a partial order relation on X. Draw the Hasse 10
Diagram of ($\mathrm{X}, /$). (CO2)
5-b. Show that a graph is bipartite graph if and only if it can be colured with two 10
colours. (CO2)

6. Answer any one of the following:-

6-a. Find all generators of multiplicative group $G=\{1,-1, i,-i\}$. (CO3)
6-b. Define a Ring and field. Show that the system ($\mathrm{E},+, \cdot \cdot$) of even integers is a ring under ordinary addition and multiplication. (CO3)

7. Answer any one of the following:-

7-a. \quad Compute the truth table for predicate $(F \vee G) \wedge \neg(F \wedge G)$. (CO4)
7-b. Justify that the statements $P \rightarrow(Q \vee R)$ and $(P \rightarrow Q) \vee(P \rightarrow R)$ are logically 10 equivalent or not. (CO4)

8. Answer any one of the following:-

8-a. In a group of 6 boys and 4 girls, four children are to be selected, find the different numbers of ways for selection such that at least one boy is always there. (CO5)

8-b. \quad Solve the recurrence relation $a_{n}-5 a_{n-1}+6 a_{n-2}=4$ with initial condition $a_{0}=1$ and $a_{1}=-1$. (CO5)

