Page 1 of 4

Subject Code:- AMCA0105

Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

MCA

SEM: I - THEORY EXAMINATION (2022 - 2023)

Subject: Discrete Mathematics

Time: 3 Hours

Printed Page:-

General Instructions:

IMP: *Verify that you have received the question paper with the correct course, code, branch etc.*

1. *This Question paper comprises of* **three Sections -A, B, & C.** *It consists of Multiple Choice Questions (MCQ's)* & *Subjective type questions.*

2. *Maximum marks for each question are indicated on right -hand side of each question.*

3. Illustrate your answers with neat sketches wherever necessary.

4. Assume suitable data if necessary.

5. *Preferably, write the answers in sequential order.*

6. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

- 1-a. The cardinality of the set of odd positive integers less than 10 is_____. (CO1) 1
 - (a) 10 (b) 5 (c) 3
 - (d) 20
- 1-b. A = {1, 2, 3} which of the following function f: A \rightarrow A does not have an inverse 1 function. (CO1)
 - (a) {(1, 1), (2, 2), (3, 3)}
 (b) {(1, 2), (2, 1), (3, 1)}
 (c) {(1, 3), (3, 2), (2, 1)}
 (d) {(1, 2), (2, 3), (3, 1)
- 1-c. The number of edges present in a complete graph having n vertices are_____.1 (CO2)

(a) (n*(n+1))/2

(An

20

Max. Marks: 100

	(b) (n*(n-1))/2	
	(c) n	
	(d) Information given is insufficient	
1-d.	A non empty set A is termed as an algebraic structure(CO2)	1
	(a) with respect to binary operation *	
	(b) with respect to ternary operation ?	
	(c) with respect to unary operation +	
	(d) with respect to unary operation -	
1-e.	A cyclic group is always(CO3)	1
	(a) abelian group	
	(b) monoid	
	(c) semigroup	
	(d) subgroup	
1-f.	A relation (34 × 78) × 57 = 34 × (78 × 57) can have(CO3)	1
	(a) distributive	
	(b) associative	
	(c) commutative	
	(d) closure	
1-g.	Let P: I am in Delhi.; Q: Delhi is clean.; then q ^ p is(CO4)	1
	(a) Delhi is clean and I am in Delhi	
	(b) Delhi is not clean or I am in Delhi	
	(c) I am in Delhi and Delhi is not clean	
	(d) Delhi is clean but I am in Mumbai	
1-h.	A compound proposition that is neither a tautology nor a contradiction is called a/an (CO4)	1
	(a) Contingency	
	(b) Equivalence	
	(c) Condition	
	(d) Inference	
1-i.	Determine the value of a_2 for the recurrence relation $a_n=4a_{n-1}+3$ with $a_0=3$ (CO5)	1
	(a) 66	

•

(b) 65

- (d) 63
- - (a) 480
 - (b) 360
 - (c) 720
 - (d) 840

2. Attempt all parts:-

2.a.	Write an example of finite and infinite set in set builder form. (CO1)	2	
2.b.	Define degree of a vertex. (CO2)	2	
2.c.	Define commutative property in abelian group with an example.(CO3)	2	
2.d.	Prove the Demorgan`s law by truth table.(CO4)	2	
2.e.	In how many ways can the letters be arranged so that all the vowels come together in the word "CRICKET".(CO5)	2	
	SECTION B	30	
3. Answer any <u>five</u> of the following:-			
3-a.	In a class of 50 students, 28 play cricket and 36 play hockey. Use Venn- diagram to find the following. (CO1) (i) Number of students play both the game. (ii) Number of students play only Cricket.	6	
3-b.	Define bijective function with an example.(CO1)	6	
3-с.	Explain Inorder, Preorder and Postorder traversal operation on Binary tree with example. (CO2)	6	
3-d.	Make a binary search tree for the following sequence of numbers: 45, 36, 76, 23, 89,115, 98, 39, 41, 56, 69, 48. Traverse the tree in Preorder, Inorder and Postorder.(CO2)	6	
3.e.	Show that the set R = $\{0, 2, 4, 6\}$ is a commutative ring under addition and multiplication modulo 8. (CO3)	6	
3.f.	Show that p \rightarrow (q \rightarrow r) is logically equivalent to (p \land q) \rightarrow r. (CO4)	6	
3.g.	Solve the recurrence relation $2Y_{n+2} - 5Y_{n+1} + 2Y_n = 0$ then find the particular solution $Y_0 = 0$ and $Y_1 = 1$. (CO5)	6	
	SECTION C	50	

4. Answer any <u>one</u> of the following:-

- 4-a. Let A = { 1, 2, 3, 5}, F = { (1,5), (2,1), (3,3), (5,2) and G = {(1, 3), (2, 1), (3, 2), (5, 5)} 10 find (I) FoG (II) GoF (III) FoF (IV) GoG. (CO1)
- 4-b. In a class of 50 students, it was found that 30 students read "The Hindu", 35 10 students read "Hindustan" and 10 read neither. Find the number of students read both: "The Hindu" and "Hindustan" newspapers. (CO1)

5. Answer any one of the following:-

- 5-a. Let $X = \{1, 2, 3, 4, 5, 6\}$, then / is a partial order relation on X. Draw the Hasse 10 Diagram of (X, /). (CO2)
- 5-b. Show that a graph is bipartite graph if and only if it can be colured with two 10 colours. (CO2)

6. Answer any one of the following:-

- 6-a. Find all generators of multiplicative group $G = \{1, -1, i, -i\}$. (CO3) 10
- 6-b. Define a Ring and field. Show that the system (E, +, \cdot) of even integers is a ring 10 under ordinary addition and multiplication. (CO3)

7. Answer any one of the following:-

- 7-a. Compute the truth table for predicate (F \lor G) $\land \neg$ (F \land G). (CO4) 10
- 7-b. Justify that the statements $P \rightarrow (Q \lor R)$ and $(P \rightarrow Q) \lor (P \rightarrow R)$ are logically 10 equivalent or not. (CO4)

8. Answer any one of the following:-

- 8-a. In a group of 6 boys and 4 girls, four children are to be selected, find the 10 different numbers of ways for selection such that at least one boy is always there. (CO5)
- 8-b. Solve the recurrence relation $a_n 5a_{n-1} + 6a_{n-2} = 4$ with initial condition 10 $a_0 = 1$ and $a_1 = -1$. (CO5)