

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)
M.Tech. (Integrated)

SEM: I - CARRY OVER THEORY EXAMINATION - AUGUST 2022

Subject: Basic Electrical and Electronics Engineering
Time: 3 Hours
Max. Marks: 100

General Instructions:

1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed.
2. Section A - Question No- 1 is 1 marker \& Question No- 2 carries 2 marks each.
3. Section B-Question No-3 is based on external choice carrying 6 marks each.
4. Section C - Questions No. 4-8 are within unit choice questions carrying 10 marks each.
5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

1 Three equal resistances of value R are connected in star. If this star is converted into equivalent delta, the resistance value of delta networks will be. \qquad .(CO1)
(a) $\mathrm{R} / 3$
(b) Zero
(c) $3 R$
(d) None of the above

1 Which of the following theorems is applicable for both linear and nonlinear circuits? (CO1)
(a) Superposition
(b) Thevenin's
(c) Norton's
(d) None of these

1-c. What is the form factor of a square wave(CO2)
(a) 1
(b) 2
(c) 1.1
(d) 3

1-d. The capacitive reactance is \qquad of frequency (CO2)
(a) directly proportional
(b) indirectly proportional
(c) independent
(d) none of above

1-e. An inverter converts \qquad .
(CO3)
(a) AC to DC
(b) DC to AC
(c) DC to AC and vice-versa
(d) AC to AC (with changed frequency)

1-f. How to reduce eddy current loss in transformer? (CO3)
(a) By using thin laminated strips
(b) By using soft magnetic material
(c) By using hard magnetic material
(d) By using solid piece of magnetic material

1-g. The full form of LCD is \qquad . (CO4)
(a) Liquid Crystal Display
(b) Liquid Crystalline Display
(c) Logical Crystal Display
(d) Logical Crystalline Display

1-h. The clipper circuit are used for............ (CO4)
(a) Rectification
(b) Removal of a part from the applied waveform
(c) Shifting of DC level
(d) None of these

1-i. The controlling of light by smartphone is the application of \qquad (CO5)
(a) Internet of Things
(b) Machine Learning
(c) Artificial Intelligence
(d) Cloud Computing

1-j. The input offset current is defined as (CO5)
(a) IB1 + IB2
(b) IB1 - IB2
(c) IB1 x IB2
(d) None of these
2. Attempt all parts:-
2.a. State the Superposition theorem. (CO1)
2.b. If the bandwidth of a resonant circuit is 10 KHz and lower half frequency is 120 KHz , Find the upper half frequency and Quality Factor.(CO2)
2.c. In a transformer copper loss at full load is 1000 watt. then copper loss at half load is....(CO3)
2.d. What do you mean by depletion layer? (with respect to p-n Junction) (CO4)
2.e. What are the characteristics of an ideal Operational Amplifier? (CO5)

SECTION B
3. Answer any five of the following:-

3-a. State and prove maximum power transfer theorem. (CO1)
3-b. Calculate the currents and voltages of all the resistance of the circuit using nodal analysis method. (CO1)

3-c. Calculate the average and rms values for half and full wave rectifier.(CO2) 6
3-d. In parallel Resonant circuit (tank circuit) if $\mathrm{R}=50$ ohm, $\mathrm{L}=0.1 \mathrm{H}$ and $\mathrm{C}=140 \boldsymbol{F}$, 6 Calculate(a)Quality Factor (b) Impedance at resonance (c)Band width.(CO2)
3.e. Derive the e.m.f equation of a single phase transformer .Also mention different types of losses occur in it. (CO3)
3.f.

1. For the Zenar Diode network, Determine $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{R}}, \mathrm{I}_{\mathrm{Z}}$ and P_{Z}.
2. Repeat part 1 with $R_{L}=3 \mathrm{k} \Omega$
(Refer Figure Below) (CO4)

3.g. Give the characteristics of an ideal Operational Amplifier. Also draw its transfer characteristics. (CO5)

SECTION C

4. Answer any one of the following:-

4-a. Using star-delta transformation, find the current in the branch b-c of the circuit. Consider all the values of resistances are in ohms. (CO1)

4-b. Find the current in various branches of circuit. Using mesh Analysis. (CO1)

5. Answer any one of the following:-

5-a. The instantaneous values of the alternating voltages are represented as $\mathrm{V}_{1}=60 \sin \omega \mathrm{t}, \mathrm{V}_{2}=$ $40 \sin (\omega t-\pi / 3)$ and $V_{3}=90 \sin (\omega t+\pi / 6)$. Derive the expression of voltage as sum and difference of given voltages.(CO 2)

5-b. A balanced delta-connected load of $(12+\mathrm{j} 9)$ ohm is connected to a 3- phase 400 V supply, 10 calculate line current, power factor and power drawn by it.(CO2)
6. Answer any one of the following:-

6-a. Calculate the Electricity bill of the house for the month of July with following load data of one day: a. An AC of 1500 W is operated for 120 Minutes. b. A Washing Machine of 300 W is operated for 40 Minutes. c.A Toaster of 1000 W is operated for 15 Minutes. d.Two

Fluorescent light of 40 W each is operated for 8 Hours. e. Three Fans of 60 W is operated for 4 Hours.(Use the cost per unit of electricity as Rs 6 in your calculations) (CO3)

6-b. Draw single line diagram of power system and explain different components and voltage 10 level. (CO3)
7. Answer any one of the following:-

7-a. Write short notes on a) n-type semiconductor b) p-type semiconductor c) potential Barrier d) 10 Effect of temperature on conductivity of a Semiconductor. (CO4)

7-b. Write Short notes on: (CO4)

1. LED Display
2. LCD
3. OLED
4. 7-Segment Display
5. Answer any one of the following:-

8-a. Derive the output voltage of a differentiator circuit.. and hence find the expression for output 10 voltage Vo for a differentiator having $\mathrm{R}=100 \mathrm{k} \Omega$ and $\mathrm{C}=0.1 \mu \mathrm{~F}$. Given that input voltage Vin $=5 \mathrm{t}$ Volts. Also draw the waveform of the output voltage. (CO5)

8-b. Explain the working of Digital Voltmeter with proper block diagram. What is difference 10 between sensors and transducers? (CO5)

