Page 1 of 4

(An Autonomous Institute Affiliated to AKTU, Lucknow) MCA SEM: I - CARRY OVER THEORY EXAMINATION - AUGUST 2022 Subject: Discrete Mathematics Max. Marks: 100 SECTION A 20

1. Attempt all parts:-

1-a. Power set of empty set has exactly ______ subset. (CO1)

- (a) One
- (b) Two
- (c) Zero
- (d) Three
- 1-b. What type of a relation is $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ on the set $A = \{1, 2, 3, 4\}$? 1 (CO1)
 - (a) Reflexive
 - (b) Transitive
 - (c) Symmetric
 - (d) None of these
- What is the number of edges present in a complete graph having n vertices? (CO2) 1-c.
 - (a) $(n^{(n+1)})/2$ (b) $(n^{*}(n-1))/2$
 - (c) n

Subject Code:- AMCA0105

Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

Time: 3 Hours

Printed Page:-

General Instructions:

1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed.

2. Section A - Question No-1 is 1 marker & Question No-2 carries 2 marks each.

3. Section B - Question No-3 is based on external choice carrying 6 marks each.

- 4. Section C Questions No. 4-8 are within unit choice questions carrying 10 marks each.
- 5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

1

1

	(d) Information given is insufficient	
1-d.	Total number of degrees of an isolated node is (CO2)	1
	(a) 0	
	(b) 1	
	(c) 2	
	(d) 3	
1-e.	An algebraic structure is called a semigroup. (CO3)	1
	(a) (P, *)	
	(b) (Q, +, *)	
	(c) (P, +)	
	(d) (+, *)	
1-f.	A function $f(x)$ is defined from A to B then f ⁻¹ is defined (CO3)	1
	(a) from A to B	
	(b) from B to A	
	(c) depends on the inverse of function	
	(d) none of the mentioned	
1-g.	A compound proposition that is neither a tautology nor a contradiction is called a (CO4)	1
	(a) Contingency	
	(b) Equivalence	
	(c) Condition	
	(d) Inference	
1-h.	Which of the proposition is $p^{(p v q)}$ (CO4)	1
	(a) tautulogy	
	(b) A contradiction	
	(c) Logically equivalent to p ^ q	
	(d) All of the above	
1-i.	Determine the value of a_2 for the recurrence relation $a_n=4a_{n-1}+3$ with $a_0=3$ (CO5)	1
	(a) 66	
	(b) 65	
	(c) 64	

Page 2 of 4

(d) 63

1-j. In how many ways can be letters of the word LEADER be arranged? (CO5)

- (a) 72
 (b) 144
 (c) 360
 (d) 720
- 2. Attempt all parts:-

2.a.	Write an example of finite and infinite set in set builder form. (CO1)		
2.b.	Define Least Upper Bound with an example. (CO2)	2	
2.c.	State any two properties of a group. (CO3)	2	
2.d.	Define Tautology with an example. (CO4)	2	
2.e.	In how many ways can the letters be arranged so that all the vowels come together? Word is	2	
	"HOCKEY." (CO5)		

1

30

50

3. Answer any five of the following:-

- 3 If X, Y and Z are Three sets then Prove that X (Y ∩ Z) = (X Y) ∪ (X Z) (CO1)
 3 R and S are relation on A = { 1, 2, 3 }, R = { (1,1), (1,2), (2,3), (3,1), (3,3) and S = { (1, 2), (1, 6 3), (2, 1), (3, 3) } then find RoS and SoR (CO1)
- 3 Draw the binary search tree for the following input list 60, 25,75,15,50,66,33,44. Trace an 6 algorithm to delete the nodes 25, 75, 44 from the tree. (CO2)
- 3 Draw the Hasse diagram of the poset(S, \leq) where S = {1, 3, 5, 7, 9, 14, 18} and 6 X \leq Y if X divides Y. (CO2)
- 3.e. Prove that intersection of two normal subgroups of a group G is a normal subgroup of 6 G. (CO3)
- 3.f. Prove that $(A \vee B) \wedge [(\neg A) \wedge (\neg B)]$ is a contradiction (CO4) 6
- 3.g. Solve the recurrence relation $2a_r 5a_{r-1} + 2a_{r-2} = 0$ then find the particular solution 6 $a_0 = 0$ and $a_1 = 1$. (CO5)

SECTION C

4. Answer any one of the following:-

- 4 Prove using mathematical induction that for all $n \ge 1$, $1 + 4 + 7 + \dots + (3n - 2) = n(3n - 1)/2$. (CO1)
- 4 Show that the relation "is proper subset of" with respects to sets is not an equivalence 10

relation. (CO1)

5. Answer any one of the following:-

- 5Show that a complemented distributive lattice is a boolean algebra. (CO2)105Prove that any connected graph G with N vertices and N -1 Edges in a tree. (CO2)10
- 6. Answer any one of the following:-
- 6 Show that the set $G = \{1, 2, 3, 4\}$ is a finite abelian group under multiplication modulo 10 5. (CO3)
- 6 Define order of an element of a group, find the order of every element in the multiplicative 10 group G = { a, a^2 , a^3 , a^4 , a^5 , $a^6 = e$ }. (CO3)
- 7. Answer any one of the following:-
- 7 Use the truth tables method to determine whether $(\neg p \vee q) \wedge (q \rightarrow \neg r \wedge \neg p) \wedge (p \vee r)$ 10 (denoted with ϕ) is satisfiable. (CO4)
- 7 Are the statements $P \rightarrow (Q \vee R)$ and $(P \rightarrow Q) \vee (P \rightarrow R)$ logically equivalent or not 10 ? (CO4)
- 8. Answer any one of the following:-
- 8 How many 3-digit numbers can be formed from the digits 2, 3, 5, 6, 7 and 9, which are 10 divisible by 5 and none of the digits is repeated? (CO5)
- 8 Solve the recurrence relation $U^{r+2} U^{r+1} + 6U^r = 2^r + r$ (CO5) 10