

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

 (An Autonomous Institute Affiliated to AKTU, Lucknow)MCA

SEM: I - CARRY OVER THEORY EXAMINATION - AUGUST 2022

Subject: Discrete Mathematics
Time: 3 Hours
Max. Marks: 100

General Instructions:

1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed.
2. Section A - Question No- 1 is 1 marker \& Question No- 2 carries 2 marks each.
3. Section B-Question No-3 is based on external choice carrying 6 marks each.
4. Section C - Questions No. 4-8 are within unit choice questions carrying 10 marks each.
5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

1-a. Power set of empty set has exactly \qquad subset. (CO1)
(a) One
(b) Two
(c) Zero
(d) Three

1-b. \quad What type of a relation is $\mathrm{R}=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ on the set $\mathrm{A}=\{1,2,3,4\}$? (CO1)
(a) Reflexive
(b) Transitive
(c) Symmetric
(d) None of these

1-c. What is the number of edges present in a complete graph having n vertices? (CO2)
(a) $\left(\mathrm{n}^{*}(\mathrm{n}+1)\right) / 2$
(b) $\left(\mathrm{n}^{*}(\mathrm{n}-1)\right) / 2$
(c) n
(d) Information given is insufficient

1-d. Total number of degrees of an isolated node is (CO2)
(a) 0
(b) 1
(c) 2
(d) 3

1-e. An algebraic structure is called a semigroup. (CO3)
(a) $\left(\mathrm{P},{ }^{*}\right)$
(b) $(\mathrm{Q},+$, *)
(c) $(\mathrm{P},+)$
(d) $(+$, *)

1-f. A function $f(x)$ is defined from A to B then f^{-1} is defined \qquad (CO3)
(a) from A to B
(b) from B to A
(c) depends on the inverse of function
(d) none of the mentioned

1-g. A compound proposition that is neither a tautology nor a contradiction is called a (CO4)
(a) Contingency
(b) Equivalence
(c) Condition
(d) Inference

1-h. Which of the proposition is $\mathrm{p}^{\wedge}(\sim \mathrm{p} \mathrm{vq})$ (CO4)
(a) tautulogy
(b) A contradiction
(c) Logically equivalent to $\mathrm{p}^{\wedge} \mathrm{q}$
(d) All of the above

1-i. \quad Determine the value of a_{2} for the recurrence relation $a_{n}=4 a_{n-1}+3$ with $a_{0}=3$ (CO5)
(a) 66
(b) 65
(c) 64
(d) 63

1-j. In how many ways can be letters of the word LEADER be arranged? (CO5)
(a) 72
(b) 144
(c) 360
(d) 720
2. Attempt all parts:-
2.a. Write an example of finite and infinite set in set builder form. (CO1)
2.b. Define Least Upper Bound with an example. (CO2)
2.c. State any two properties of a group. (CO3)
2.d. Define Tautology with an example. (CO4)
2.e. In how many ways can the letters be arranged so that all the vowels come together? Word is "HOCKEY." (CO5)

SECTION B
3. Answer any five of the following:-

3 If X, Y and Z are Three sets then Prove that $X-(Y \cap Z)=(X-Y) \cup(X-Z)(C O 1)$
3 R and S are relation on $\mathrm{A}=\{1,2,3\}, R=\{(1,1),(1,2),(2,3),(3,1),(3,3)$ and $S=\{(1,2),(1$, $3),(2,1),(3,3)\}$ then find RoS and SoR (CO1)

3 Draw the binary search tree for the following input list $60,25,75,15,50,66,33,44$. Trace an algorithm to delete the nodes $25,75,44$ from the tree. $(\mathrm{CO} 2)$

3 Draw the Hasse diagram of the $\operatorname{poset}(S, \leq)$ where $S=\{1,3,5,7,9,14,18\}$ and $X \leq Y$ if X divides Y. (CO2)
3.e. Prove that intersection of two normal subgroups of a group G is a normal subgroup of G. (CO3)
3.f. Prove that $(A \vee B) \wedge[(\neg A) \wedge(\neg B)]$ is a contradiction $(C O 4)$
3.g. Solve the recurrence relation $2 a_{r}-5 a_{r-1}+2 a_{r-2}=0$ then find the particular solution $\mathrm{a}_{0}=0$ and $\mathrm{a}_{1}=1 .(\mathrm{CO} 5)$

SECTION C

4. Answer any one of the following:-

4 Prove using mathematical induction that for all $\mathrm{n} \geq 1$,
$1+4+7+\cdots+(3 n-2)=n(3 n-1) / 2 .(C O 1)$
relation. (CO1)
5. Answer any one of the following:-

5 Show that a complemented distributive lattice is a boolean algebra. (CO2) 10
5 Prove that any connected graph G with N vertices and $\mathrm{N}-1$ Edges in a tree. (CO2)
6. Answer any one of the following:-

6 Show that the set $G=\{1,2,3,4\}$ is a finite abelian group under multiplication modulo
5. (CO3)

6 Define order of an element of a group, find the order of every element in the multiplicative
group $G=\left\{a, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}=e\right\} .(C O 3)$
7. Answer any one of the following:-

7 Use the truth tables method to determine whether $(\neg p \vee q) \wedge(q \rightarrow \neg r \wedge \neg p) \wedge(p \vee r)$
(denoted with ϕ) is satisfiable. (CO4)
7 Are the statements $P \rightarrow(Q \vee R)$ and $(P \rightarrow Q) \vee(P \rightarrow R)$ logically equivalent or not 10 ? (CO4)
8. Answer any one of the following:-

8 How many 3-digit numbers can be formed from the digits 2, 3, 5, 6, 7 and 9, which are divisible by 5 and none of the digits is repeated? (CO5)

8
Solve the recurrence relation $\mathrm{U}^{\mathrm{r}+2}-\mathrm{U}^{\mathrm{r}+1}+6 \mathrm{U}^{\mathrm{r}}=2^{\mathrm{r}}+\mathrm{r}(\mathrm{CO} 5)$

