NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute)
Affiliated to Dr. A.P.J. Abdul Kalam Technical University, Uttar Pradesh, Lucknow)
B.Tech.

SEM: I - CARRY OVER THEORY EXAMINATION - AUGUST 2022
Subject: Physics for Computing Science
Time: 03:00 Hours

General Instructions:

1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed.
2. Section A - Question No- 1 is 1 marker \& Question No- 2 carries 2 marks each.
3. Section B-Question No-3 is based on external choice carrying 5 marks each.
4. Section C - Questions No. 4-8 are within unit choice questions carrying 4 marks each.
5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-
1.a. Energy of SHM always..... (CO1)
(a) 0
(b) Decreases
(c) remain conserved
(d) increases
1.b. The polarization of light confirms... (CO2)
(a) longitudinal nature of light
(b) dual nature of light
(c) transverse nature of light
(d) none
1.c. In which energy state particle energy is 2 times its ground state energy? (CO3)
(a) IInd level
(b) Ist level
(c) IIIrd level
(d) none
(a) orthorhombic
(b) cubic
(c) trigonal
(d) triclinic
1.d. Which crystal system has four Bravais lattices? (CO4)
1.e. Zeroth law of thermodynamics deals about (CO5)
(a) Temperature
(b) Pressure
(c) Density
(d) Velocity
2. Attempt all parts:-
2.a. What is displacement current? (CO1) 2
2.b. What do you mean by grating and grating element? (CO2) 2
2.c. What is de-Broglie's hypothesis of matter waves? (CO3) 2
2.d. What do you understand by coordination number? (CO4) 2
2.e. What is the first law of thermodynamics? (CO5) 2

SECTION B 15
3. Answer any three of the following:-
3.a. Derive the SHM equation and find the velocity of the particle at any displacement x . (CO1) 5
3.b. Describe and explain the formation of Newton's rings in reflected monochromatic light. 5 (CO2)
3.c. Calculate the energy difference between the ground state and first excited state for electron 5
in one dimensional rigid box of length $10^{-8} \mathrm{~cm}$. Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$ and $\mathrm{h}=$
$6.62 \times 10^{-34} \mathrm{j}$-sec. (CO3)
3.d. Find the Miller indices of a set of parallel planes which makes intercepts in the ratio 3a:4b 5
on the x and y axes. And are parallel to Z-axis . a,b,c being primitives. (CO4)
3.e. Discuss various types of optical fiber with diagram. (CO5) 5

SECTION C 20
4. Answer any one of the following:-

4-a. In a damped oscillatory motion an object oscillates with a frequency of 1 Hz and its 4
amplitude of vibration is halved in 5 s . Find the differential equation for the oscillation. (CO1)

4-b. Derive the equation of continuity. (CO1)
5. Answer any one of the following:-

5-a. What is the difference between interference and diffraction? (CO2) 4
5-b. Discuss ellptically polarised light. (CO2) 4
6. Answer any one of the following:-

6-a. Prove that phase velocity is greater than the velocity of light. (CO3) 4
6-b. Calculate the velocity and kinetic energy of a neutron having de-Broglie wavelength $1 \AA . \quad 4$ (CO3)
7. Answer any one of the following:-

7-a. The spacing of the (111) planes of a SC lattice crystal is $1.8 \mathrm{~A}^{0}$. What is the spacing of the 4 (100) planes? (CO4)

7-b. Explain SC, BCC and FCC lattices of a cubic crystal system. (CO4)
8. Answer any one of the following:-

8-a. Explain the construction of Ruby laser with neat and clean diagram. (CO5) 4
8-b. What do you understand by entropy? What does the second law of thermodynamics tells? (CO5)

