Printed Page:-	Subject Code:- AAS0103						
	Roll. No:						
NOIDA INSTITUTE OF ENGINEERING A	AND TECHNOLOGY, GREATER NOIDA						
(An Autonomous Institute Affiliated to AKTU, Lucknow)							
B.Tech.							
SEM: I - CARRY OVER THEORY	EXAMINATION - AUGUST 2022						
Subject: Engineeri	ng Mathematics-I						
Time: 3 Hours	Max. Marks: 100						
General Instructions:							
1. The question paper comprises three sections, A, B, and	nd C. You are expected to answer them as directed.						
2. Section A - Question No- 1 is 1 marker & Question N	No- 2 carries 2 mark each.						
3. Section B - Question No-3 is based on external choic	e carrying 6 marks each.						
4. Section C - Questions No. 4-8 are within unit choice							
5. No sheet should be left blank. Any written material a	fter a blank sheet will not be evaluated/checked.						
SECTION	A 20						
1. Attempt all parts:-							
1-a. If the rank of A is 2, then rank of A' is (CO	1)						
(a) 3							
(b) 2							
(c) 8							
(d) 16							
1-b. If the eigen values of a matrix A are 4, 5, 7 t	hen write the eigen values of A ⁻¹ are (CO1)						
(a) $4, 5^2, 7^3$							
(b) 4, 5, 7							
(c) 1/4, 1/5, 1/7							
(d) none of these							
1-c. If $u = \sin^{-1} \frac{x + 2y + 3z}{\sqrt{(x^8 + y^8 + z^8)}}$ then the value of	$\int x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$ is (CO2)						
(a) 3 cot u							
(b) 3 tan u							
(c) -3 tan u							

(d) -3 cot u

1-d.	The asymptotes parallel to the y-axis of the curve $\mathbf{x}^2 y^2 - \mathbf{a}^2 (\mathbf{x}^2 + y^2) = 0$ is (CO2)	1
	(a) 2a	
	(b) $x = a$	
	(c) $x = 3a$	
	(d) None of these	
1-e.	An error of 2% is made in measuring length and breadth then the percentage error in	1
	the area of the rectangle is (CO3)	
	(a) 6	
	(b) 4	
	(c) 8	
	(d) 16	
1-f.	The expansion of $\sin x$ is (CO3)	1
	(a) $1-x-\frac{x^2}{2!}-\frac{x^3}{3!}-\frac{x^4}{4!}+\dots$	
	(b) $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \dots$	
	(c) $-x - \frac{x^3}{3!} - \frac{x^5}{5!} - \frac{x^7}{7!} \dots$	
	(d) $x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!}$	
1-g.	The value of $\lceil n \rceil (1-n)$ is (CO4)	1
	$\frac{\pi}{\sin \pi}$	
	(b) sinn π	
	π	
	(c) $\cos n\pi$	
	(d) None of these	
1-h.	The Value of $\int_{1}^{0} \int_{0}^{1} (x + y) dx dy$ is (CO4)	1
	(a) 2	
	(b) -1	

Page 2 of 5

1

If two successive discount are 30% and 10%. Find single equivalent discount. (CO5)

(c) -2

1-i.

(d) None of these

	(a) 35%				
	(b) 39%				
	(c) 41%				
	(d) None				
1-j.	If blue is coded as green, green is coded as white and white is code as black, and then what will be the code for the colour of grass? (CO5)	1			
	(a) White				
	(b) Green				
	(c) Black				
	(d) None of These				
2. Attem	pt all parts:-				
2.a.	Show that the following set of vectors (1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1) are linearly independent. (CO1)	2			
2.b.	Find the n th differential coefficients of $x^2 e^x$. (CO2)	2			
2.c.	In a sphere of radius r, if r is measured as 18.5 inches and a possible error of 0.1 inch then find possible error in surface area. (CO3)				
2.d.	Evaluate the value of $\int_0^1 x^4 (1-x)^3 dx$. (CO4)	2			
2.e.	Find the missing terms of 6, 9, 7, 10, 8, 11, ? (CO5)	2			
	SECTION B 30				
3. Answe	er any <u>five</u> of the following:-				
3-a.	Find the characteristic roots of the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and verify Caley-Hamilton theorem	6			
	for this matrix. Find A $^{-1}$ also express $A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10I$ as a linear polynomial in A. (CO1)				
3-b.	Find the inverse of the matrix by using elementary transformations, where $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$.				
3-c.	If $u = f(r, s, t)$ and $r = \frac{x}{y}$, $s = \frac{y}{z}$, $t = \frac{z}{x}$, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$. (CO2)	6			
3-d.	If $u = \tan^{-1} \left(\frac{x3 + y3}{x - y} \right)$, prove that (CO2)	6			
	(i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$				

···	2 0 ² u	\mathbf{d}^2 u	, ₂ ծ ²ս	2 2 .
(ii)	$x^2 {\mathbf{o}x^2} + 2xy$	дхду	$+y^2 {\partial y^2} =$	2cos3u sinu

- Expand $e^x \sin y$ in the powers of x and y in the neighborhood of $\left(0, \frac{\pi}{4}\right)$ up to the three 3.e. degree terms. (CO3)
 - 6
- Evaluating by changing the order of integration $\int_{0}^{1} \int_{2}^{2} e^{-x^2} dx dy$. 6 3.f.
- In certain code language 'si po re' means 'book is thick', 'ti na re' means 'bag is heavy', 'ka 3.g. 6 si' means 'interesting book' and 'de ti' means 'that bag'. What should stand for 'that is interesting' in that code language? (CO5)

- 4. Answer any one of the following:-
- Find the eigen values and eigen vectors of a matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \end{bmatrix}$. (CO1) 10 4.a.
- 4.b. 10 Investigate for what values of λ and \sqcup the equations x+2y+z=8, 2x+2y+2z=13, $3x+4y+\lambda z=\mu$ have (i) no solution (ii) unique solution (iii) many solutions. (CO1)
- 5. Answer any one of the following:-

5.a. If
$$y = \sin (a \sin^{-1} x)$$
, then find $y_n(0)$. (CO2)

5.b. Trace the curve
$$y^2 (2a - x) = x^3$$
. (CO2)

- 6. Answer any one of the following:-
- functions u = x + y + z, $v = x^2 + y^2 + z^2 2xy 2yz 2zx$ and 6.a. Show that the 10 $w = x^3 + y^3 + z^3 - 3xyz$ are functionally related. Find the relation between them.
- Find the maximum and minimum distances of the point (1, 2, -1) to the sphere 6.b. 10 $x^2 + y^2 + z^2 = 24$. (CO3)
- 7. Answer any one of the following:-

7.a. Show that
$$\beta(m, n) = \lceil m \lceil n / \lceil (m+n) \rceil$$
. (CO4)

7.b. Apply Dirichlet's integral to find the volume and mass contained in the first octant solid 10 region of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ if the density at any point is ρ (x,y,z) = kxyz. (CO4)

- 8. Answer any one of the following:-
- 8.a. (i) A candidate who gets 30% of the marks in a test fails by 50 marks. Another candidate 10 who get 320 marks fails by 30 marks. Find the maximum marks?

(ii) Simplify:
$$\frac{2\frac{3}{4}}{1\frac{5}{6}} \div \frac{7}{8} \times \left(\frac{1}{3} + \frac{1}{4}\right) + \frac{5}{7} \div \frac{3}{4} \text{ of } \frac{3}{7}$$

- (iii) If 'CARING' is coded as 'EDVGKC' and 'SHARES' is coded as 'UKEPBO', how will CASKET be coded as in the same code? (CO5)
- 8.b. (i) The average age of husband, wife and their child 3 years ago was 27 years and that of 10 wife and the child 5 years ago was 20 years. Find the present age of husband?
 - (ii) A tradesman sold an article at a loss of 20%. If the selling price had been increase by Rs. 100, there would have been a gain of 5%. Find the cost price of the article?
 - (iii) Find the missing term 122, 62, 32, ?, 9.5, 5.75. (CO5)