Printed Page:-Subject Code:- AMCA0203N Roll. No: NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow) MCA SEM: III - CARRY OVER THEORY EXAMINATION - SEPTEMBER 2022 Subject: Data Structures and Analysis of Algorithm Time: 3 Hours Max. Marks: 100 General Instructions: 1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed. 2. Section A - Question No-1 is 1 marker & Question No-2 carries 2 marks each. 3. Section B - Question No-3 is based on external choice carrying 6 marks each. 4. Section C - Questions No. 4-8 are within unit choice questions carrying 10 marks each. 5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked. SECTION A 20 1. Attempt all parts:-Which of the following case exist in complexity theory? (CO1) 1-a. 1 (a) Best case (b) Worst case (c) Average case (d) All of the mentioned 1-b. What is an algorithm? (CO1) 1 (a) A flowchart (b) Step by step instructions used to solve a problem (c) A decision (d) None of These A data structure in which elements can be inserted or deleted at/from both ends but not in the 1 1-c. middle is? (CO2) (a) Queue (b) Circular queue (c) Dequeue

	(d) Priority queue	
1-d.	The optimal data structure used to solve Tower of Hanoi is(CO2)	1
	(a) Tree	
	(b) Heap	
	(c) Priority queue	
	(d) Stack	
1-e.	For the best case input, the running time of an insertion sort algorithm is? (CO3)	1
	(a) Linear	
	(b) Binary	
	(c) Quadratic	
	(d) Depends on the input	
1-f.	Which of the following ways can be used to represent a graph? (CO3)	1
	(a) Adjacency List and Adjacency Matrix	
	(b) Adjacency List, Adjacency Matrix and Incidence Matrix	
	(c) Adjacency List and Incidence Matrix	
	(d) None of These	
1-g.	A full binary tree can be generated using (CO4)	1
	(a) post-order and pre-order traversal	
	(b) pre-order traversal	
	(c) post-order traversal	
	(d) in-order traversal	
1-h.	What is the worst-case number of arithmetic operations performed by recursive binary	1
	search on a sorted array of size n? (CO4)	
	(a) $\theta(\mathbf{n})$	
	(b) θ(√n)	
	(c) $\theta(\log_2(n))$	
	(d) $\theta(n2)$	
1-i.	Average case time complexity of merge sort. (CO5)	1
	(a) $O(n \log n)$	
	(b) O(log n)	
	(c) $O(\log \log n)$	

- 1-j. Best case time complexity of merge sort. (CO5)
 - (a) O(n log n)
 (b) O(log log n)
 (c) O(log n)
 - (d) All the Above
- 2. Attempt all parts:-

2.a.	Define Linked list and their types. (CO1)	2
2.b.	write the steps involved in insertion of an element in stack. (CO2)	2
2.c.	Define graph with an example. (CO3)	2
2.d.	Create an AVL Tree for the following elements: a, z, b, y, c, x, d, w, e, v, f. (CO4)	2
2.e.	Define Greedy Programming. (CO5)	2
	SECTION B 30	1
3. Answe	r any <u>five</u> of the following:-	
3-a.	Differentiate between Array and Linked list. (CO1)	6
3-b.	Explain all types of linked list available in detail. (CO1)	6
3-c.	Convert infix to postfix	6
	(A+B)*(C+D)	
	$A+B+C+D \qquad (CO2)$	
3-d.	Define searching? List different types of searching available? Write algorithm for linea search. (CO2)	ur 6
3.e.	Differentiate between Bubble and selection sort. (CO3)	6
3.f.	Write down the short notes on (i)Strictly Binary Tree (ii) Complete Binary Tree (iii)Extended Binary Tree (iv)Threaded Binary Tree. (CO4)	e 6
3.g.	Define Dijkstra's algorithm. Write down the algo for it. (CO5)	6
	SECTION C 50	1
4. Answe	r any <u>one</u> of the following:-	
4-a.	Write a program in C to delete the node at the end of a circular linked list. (CO1)	10
4-b.	Write a program in C to insert a new node at any position in a doubly linked list.(CO1)	10
5. Answe	r any <u>one</u> of the following:-	
5-a.	The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into an initially empty hash table of	of 10

1

length 10 using open addressing with hash function $h(k) = k \mod 10$ and linear probing. What is the resultant hash table? (CO2)

5-b. Define application of queue in data Structure and Applications of Priority Queue. (CO2) 10

6. Answer any one of the following:-

- 6-a. Write a C program to sort a list of elements using the bubble sort algorithm and Insertion 10 sort write algorithm of both. (CO3)
- 6-b.Define Breadth First Traversal. Illustrate the algorithm with help of example. (CO3)10

7. Answer any one of the following:-

- 7-a. Given the following sequence construct a binary tree Inorder : { 4, 2, 1, 7, 5, 8, 3, 6 } 10 Preorder : { 1, 2, 4, 3, 5, 7, 8, 6 }Write down the algorithm for it. (CO4)
- 7-b. Find all possible binary trees with given Inorder Traversal And Algorithm of it. (CO4) 10
- 8. Answer any one of the following:-
- 8-a. Analyze the best, average and worst case complexity of quick sort. (CO5) 10
- 8-b. Which Algorithm uses divide and Conquer technology. explain in details. (CO5) 10