

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)
MCA

SEM: III - CARRY OVER THEORY EXAMINATION - SEPTEMBER 2022
 Subject: Data Structures and Analysis of Algorithm

Time: 3 Hours
Max. Marks: 100

General Instructions:

1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed.
2. Section A - Question No- 1 is 1 marker \& Question No- 2 carries 2 marks each.
3. Section B-Question No-3 is based on external choice carrying 6 marks each.
4. Section C - Questions No. 4-8 are within unit choice questions carrying 10 marks each.
5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

1-a. Which of the following case exist in complexity theory? (CO1)
(a) Best case
(b) Worst case
(c) Average case
(d) All of the mentioned

1-b. What is an algorithm? (CO1)
(a) A flowchart
(b) Step by step instructions used to solve a problem
(c) A decision
(d) None of These

1-c. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? (CO 2)
(a) Queue
(b) Circular queue
(c) Dequeue
(d) Priority queue

1-d. The optimal data structure used to solve Tower of Hanoi is \qquad .(CO2)
(a) Tree
(b) Heap
(c) Priority queue
(d) Stack

1-e. For the best case input, the running time of an insertion sort algorithm is? (CO3)
(a) Linear
(b) Binary
(c) Quadratic
(d) Depends on the input

1-f. Which of the following ways can be used to represent a graph? (CO3)
(a) Adjacency List and Adjacency Matrix
(b) Adjacency List, Adjacency Matrix and Incidence Matrix
(c) Adjacency List and Incidence Matrix
(d) None of These

1-g. A full binary tree can be generated using \qquad . (CO4)
(a) post-order and pre-order traversal
(b) pre-order traversal
(c) post-order traversal
(d) in-order traversal

1-h. What is the worst-case number of arithmetic operations performed by recursive binary search on a sorted array of size n ? (CO4)
(a) $\theta(\mathrm{n})$
(b) $\theta(\sqrt{ } n)$
(c) $\theta\left(\log _{2}(\mathrm{n})\right)$
(d) $\theta(\mathrm{n} 2)$

1-i. Average case time complexity of merge sort. (CO5)
(a) $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
(b) $\mathrm{O}(\log \mathrm{n})$
(c) $\mathrm{O}(\log \log \mathrm{n})$
(d) None of These

1-j. Best case time complexity of merge sort. (CO5)
(a) $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
(b) $\mathrm{O}(\log \log \mathrm{n})$
(c) $\mathrm{O}(\log n)$
(d) All the Above
2. Attempt all parts:-
2.a. Define Linked list and their types. (CO1) 2
2.b. write the steps involved in insertion of an element in stack. (CO2) 2
2.c. Define graph with an example. (CO3) 2
2.d. Create an AVL Tree for the following elements: a, z, b, y, c, x, d, w, e, v, f. (CO4) 2
2.e. Define Greedy Programming. (CO5) 2

SECTION B 30
3. Answer any five of the following:-

3-a. Differentiate between Array and Linked list. (CO1) 6
3-b. Explain all types of linked list available in detail. (CO1) 6
$\begin{array}{ll}\text { 3-c. Convert infix to postfix } & 6 \\ (\mathrm{~A}+\mathrm{B}) *(\mathrm{C}+\mathrm{D})\end{array}$

3-d. Define searching? List different types of searching available? Write algorithm for linear 6
search. (CO2)
3.e. Differentiate between Bubble and selection sort. (CO3)
3.f. Write down the short notes on (i)Strictly Binary Tree (ii) Complete Binary Tree 6 (iii)Extended Binary Tree (iv)Threaded Binary Tree. (CO4)
3.g. Define Dijkstra's algorithm. Write down the algo for it. (CO5)

SECTION C
4. Answer any one of the following:-

4-a. Write a program in C to delete the node at the end of a circular linked list. (CO1) 10
4-b. Write a program in C to insert a new node at any position in a doubly linked list.(CO1) 10
5. Answer any one of the following:-

5-a. The keys $12,18,13,2,3,23,5$ and 15 are inserted into an initially empty hash table of
length 10 using open addressing with hash function $\mathrm{h}(\mathrm{k})=\mathrm{k}$ mod 10 and linear probing. What is the resultant hash table? (CO2)

5-b. Define application of queue in data Structure and Applications of Priority Queue. (CO2)
6. Answer any one of the following:-

6-a. Write a C program to sort a list of elements using the bubble sort algorithm and Insertion 10 sort write algorithm of both. (CO3)

6-b. Define Breadth First Traversal. Illustrate the algorithm with help of example. (CO3)
7. Answer any one of the following:-

7-a. Given the following sequence construct a binary tree Inorder : \{ 4, 2, 1, 7, 5, 8, 3, 6$\} 10$ Preorder : \{ 1, 2, 4, 3, 5, 7, 8, 6$\}$ Write down the algorithm for it. (CO4)

7-b. Find all possible binary trees with given Inorder Traversal And Algorithm of it. (CO4)
8. Answer any one of the following:-

8-a. Analyze the best, average and worst case complexity of quick sort. (CO5) 10
8-b. Which Algorithm uses divide and Conquer technology. explain in details. (CO5)

