Page 1 of 4

(An Autonomous Institute Affiliated to AKTU, Lucknow) MCA SEM: I - CARRY OVER THEORY EXAMINATION - SEPTEMBER 2022 Subject: Discrete Mathematics 1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed. 2. Section A - Question No-1 is 1 marker & Question No-2 carries 2 marks each.

3. Section B - Question No-3 is based on external choice carrying 6 marks each.

4. Section C - Questions No. 4-8 are within unit choice questions carrying 10 marks each.

5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

Time: 3 Hours

General Instructions:

1-a. Power set of empty set has exactly ______ subset. (CO1)

- (a) One
- (b) Two
- (c) Zero
- (d) Three

1-b. What is the cardinality of the set of odd positive integers less than 10? (CO1)

- (a) 10
- (b) 5
- (c) 3
- (d) 20

An edge with identical ends is called: (CO2) 1-c.

- (a) Loop
- (b) Link
- (c) Complete Graph
- (d) Bipartite Graph

Printed Page:-

Subject Code:- AMCA0105

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

Roll. No:

Max. Marks: 100

1

1

1

20

1

1

1

1

1

- (a) Binary Relation
- (b) Equivalence Relation
- (c) Irreflexive Relation
- (d) Compatibility Relation

1-e. Condition for monoid is (CO3)

- (a) (a+e)=a
- (b) (a*e)=(a+e)
- (c) a=(a*(a+e)
- (d) (a*e)=(e*a)=a
- 1-f. Which of the following satisfies commutative law? (CO3)
 - (a) **A**
 - (b) v
 - $(c) \leftrightarrow$
 - (d) All of the mentioned

1-g. Let P: I am in Bangalore.; Q: I love cricket.; then q -> p(q implies p) is? (CO4)

- (a) If I love cricket then I am in Bangalore
- (b) If I am in Bangalore then I love cricket
- (c) I am not in Bangalore
- (d) I love cricket
- 1-h. Which of the following statement regarding sets is false? (CO4)
 - (a) $A \cap A = A$
 - (b) A U A = A
 - (c) $A (B \cap C) = (A B) U (A C)$
 - (d) (A U B)' = A' U B'

1-i. Find the value of a 3 for the recurrence relation a $n=5a_{n-1}+4$ with a 0=1 (CO5)

- (a) 249(b) 259(c) 269
- (d) 279

1-j. In how many ways 4 boys and 3 girls can be seated in a row so that they are alternate. (CO5) 1

(a) 144
(b) 288
(c) 12
(d) 256

2. Attempt all parts:-

2.a.	If U = $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and A = $\{1, 3, 5, 7, 9, 10\}$. Find A'. (CO1)	2
2.b.	What is degree of a vertex? (CO2)	2
2.c.	Define Identity property in group with an example. (CO3)	2
2.d.	If P is true and Q is false then find the truth value of $\neg P \rightarrow Q$. (CO4)	2
2.e.	Find the value of a_4 for the recurrence relation $a_n = 2a_{n-1} + 3$, with $a_0 = 2$. (CO5)	2
	SECTION B 30	
3. A	nswer any <u>five</u> of the following:-	
3-a.	R and S are relation on A = { 1, 2, 3}, R = { (1,1), (1,2), (2,3), (3,1), (3,3) and S = {(1, 2), (1, 3), (2, 1), (3, 3)} then find RoS and SoR (CO1)	6
3-b.	Discuss the Symmetric and Asymmetric relation with an example. (CO1)	6
3-c.	Draw the Hasse diagram of the poset(S, \leq) where S = {2, 3, 6, 9, 15, 27, 45} and X \leq Y if X divides Y. (CO2)	6
3-d.	Explain the method of representing graphs by using matrices? (CO2)	6
3.e.	Show that the set $R = \{0, 2, 4, 6\}$ is a commutative ring under addition and multiplication modulo 8. (CO3)	6
3.f.	Make a truth table for the statement $(PVQ) \rightarrow (P \land Q)$. (CO4)	6
3.g.	Define Pigeon hole Principle with an example. (CO5)	6
	SECTION C 50	
4. A	nswer any <u>one</u> of the following:-	
4-a.	Let V = {1, 2, 3, 4}, F = { (1,3), (2,1), (3,4), (4,3)} and G = { (1,2), (2,3), (3,1), (4,1)} find (I) FoG (II) GoF (III) FoF (CO1)	10
4-b.	In a class of 100 students, 43 play basketball and 37 play baseball. 9 students play both. How many students do not play either sport? (CO1)	10
5. A	nswer any <u>one</u> of the following:-	
5-a.	Let $X = \{1, 2, 3, 4, 5, 6\}$, then / is a partial order relation on X. Draw the Hasse Diagram of	10

5-a. Let $X = \{1, 2, 3, 4, 5, 6\}$, then / is a partial order relation on X. Draw the Hasse Diagram of 10 (X, /). (CO2)

5-b. Draw the Hasse diagram of the poset(S, \leq) where S = {1, 2, 3, 5, 6, 10, 15, 30} 10 and

```
X \le Y if X divides Y. (CO2)
```

6. Answer any one of the following:-

- 6-a. Prove that the set {0,1, 2, 3, 4, 5} for a finite abelian group under addition modulo 6. What 10 will happen if the set is {1, 2, 3, 4, 5}? (CO3)
- 6-b. Find all generators of multiplicative group $G = \{1,-1, i,-i\}$. (CO3) 10

7. Answer any one of the following:-

- 7-a.Define quantifiers with an example. (CO4)107-b.Verify whether the following two statements are logically equivalent or not10 $\neg(P \rightarrow Q)$ and $P \land \neg Q$. (CO4)10
- 8. Answer any one of the following:-
- 8-a. Solve the recurrence relation $a_{n+2} 5a_{n+1} + 6a_n = 2$ with initial condition 10 $a_0 = 1$ and $a_1 = -1$. (CO5)
- 8-b. Out of 7 consonants and 4 vowels, how many words of 3 consonants and 2 vowels can be 10 formed? (CO5)