

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)
MCA

SEM: I - CARRY OVER THEORY EXAMINATION - SEPTEMBER 2022

Subject: Discrete Mathematics
Time: 3 Hours
Max. Marks: 100

General Instructions:

1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed.
2. Section A - Question No- 1 is 1 marker \& Question No- 2 carries 2 marks each.
3. Section B-Question No-3 is based on external choice carrying 6 marks each.
4. Section C - Questions No. 4-8 are within unit choice questions carrying 10 marks each.
5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

1-a. Power set of empty set has exactly \qquad subset. (CO1)
(a) One
(b) Two
(c) Zero
(d) Three

1-b. What is the cardinality of the set of odd positive integers less than 10 (CO1)
(a) 10
(b) 5
(c) 3
(d) 20

1-c. An edge with identical ends is called: (CO2)
(a) Loop
(b) Link
(c) Complete Graph
(d) Bipartite Graph

1-d. If R is reflexive, symmetric and transitive then the relation is said to be: (CO2)
(a) Binary Relation
(b) Equivalence Relation
(c) Irreflexive Relation
(d) Compatibility Relation

1-e. Condition for monoid is (CO3)
(a) $(a+e)=a$
(b) $\left(a^{*} e\right)=(a+e)$
(c) $a=\left(a^{*}(a+e)\right.$
(d) $\left(a^{*} e\right)=\left(e^{*} a\right)=a$

1-f. Which of the following satisfies commutative law? (CO3)
(a) \wedge
(b) v
(c) \leftrightarrow
(d) All of the mentioned

1-g. Let P: I am in Bangalore.; Q: I love cricket.; then q -> p(qimplies p) is? (CO4)
(a) If I love cricket then I am in Bangalore
(b) If I am in Bangalore then I love cricket
(c) I am not in Bangalore
(d) I love cricket

1-h. Which of the following statement regarding sets is false? (CO4)
(a) $A \cap A=A$
(b) A U A $=\mathrm{A}$
(c) $A-(B \cap C)=(A-B) U(A-C)$
(d) $(\mathrm{A} \mathrm{U} \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \mathrm{U} \mathrm{B}^{\prime}$

1-i. Find the value of a ${ }_{3}$ for the recurrence relation a $n=5 a_{n-1}+4$ with a ${ }_{0}=1$ (CO5)
(a) 249
(b) 259
(c) 269
(d) 279

1-j. In how many ways 4 boys and 3 girls can be seated in a row so that they are alternate. (CO5)
(a) 144
(b) 288
(c) 12
(d) 256
2. Attempt all parts:-
2.a. If $U=\{1,2,3,4,5,6,7,8,9,10\}$ and $A=\{1,3,5,7,9,10\}$. Find A^{\prime}. (CO1)
2.b. What is degree of a vertex? (CO2)
2.c. Define Identity propery in group with an example. (CO3) 2
2.d. If P is true and Q is false then find the truth value of $\neg P \rightarrow Q$. (CO4) 2
2.e. Find the value of a_{4} for the recurrence relation $a_{n}=2 a_{n-1}+3$, with $a_{0}=2$. (CO5) 2

SECTION B 30
3. Answer any five of the following:-

3-a. $\quad R$ and S are relation on $A=\{1,2,3\}, R=\{(1,1),(1,2),(2,3),(3,1),(3,3)$ and $S=\{(1,2),(1, \quad 6$

3-b. Discuss the Symmetric and Asymmetric relation with an example. (CO1) 6
3-c. Draw the Hasse diagram of the $\operatorname{poset}(S, \leq)$ where $S=\{2,3,6,9,15,27,45\}$ and 6 $X \leq Y$ if X divides Y. (CO2)

3-d. Explain the method of representing graphs by using matrices? (CO2)
3.e. Show that the set $\mathrm{R}=\{0,2,4,6\}$ is a commutative ring under addition and multiplication 6 modulo 8. (CO3)
3.f. Make a truth table for the statement $(P \vee Q) \rightarrow(P \wedge Q)$. (CO4)
3.g. Define Pigeon hole Principle with an example. (CO5)

SECTION C

4. Answer any one of the following:-

4-a. Let $\mathrm{V}=\{1,2,3,4\}, \mathrm{F}=\{(1,3),(2,1),(3,4),(4,3)\}$ and $\mathrm{G}=\{(1,2),(2,3),(3,1),(4,1)\}$ find (I) FoG (II) GoF (III) FoF (CO1)

4-b. In a class of 100 students, 43 play basketball and 37 play baseball. 9 students play both. How 10 many students do not play either sport? (CO1)
5. Answer any one of the following:-

5-a. Let $X=\{1,2,3,4,5,6\}$, then / is a partial order relation on X. Draw the Hasse Diagram of 10 ($\mathrm{X}, /$). (CO2)

5-b. \quad Draw the Hasse diagram of the $\operatorname{poset}(S, \leq)$ where $S=\{1,2,3,5,6,10,15,30\}$ and
$X \leq Y$ if X divides Y. (CO2)
6. Answer any one of the following:-

6-a. Prove that the set $\{0,1,2,3,4,5\}$ for a finite abelian group under addition modulo 6 . What 10 will happen if the set is $\{1,2,3,4,5\}$? (CO3)

6-b. Find all generators of multiplicative group $G=\{1,-1, i,-i\} .(C O 3)$
7. Answer any one of the following:-

7-a. Define quantifiers with an example. (CO4) 10
7-b. Verify whether the following two statements are logically equivalent or not $\neg(\mathrm{P} \rightarrow \mathrm{Q})$ and $\mathrm{P} \wedge \neg \mathrm{Q}$. (CO4)
8. Answer any one of the following:-

8-a. \quad Solve the recurrence relation $a_{n+2}-5 a_{n+1}+6 a_{n}=2$ with initial condition

$$
\mathrm{a}_{0}=1 \text { and } \mathrm{a}_{1}=-1 .(\mathrm{CO} 5)
$$

8-b. Out of 7 consonants and 4 vowels, how many words of 3 consonants and 2 vowels can be 10 formed? (CO5)

