Subject Code:- AMBA0205 Printed Page:-Roll. No: NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow) MBA SEM: II - CARRY OVER THEORY EXAMINATION - SEPTEMBER 2022 Subject: Quantitative Techniques for Managers Time: 3 Hours Max. Marks: 100 General Instructions: 1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed. 2. Section A - Question No-1 is 1 marker & Question No-2 carries 2 marks each. 3. Section B - Question No-3 is based on external choice carrying 6 marks each. 4. Section C - Questions No. 4-8 are within unit choice questions carrying 10 marks each. 5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked. SECTION A 20 1. Attempt all parts:-The graphical method of LP problem uses (CO1) 1-a. 1 (a) Objective function equation (b) Constraint equation (c) Linear equations (d) All of the above 1-b. What is the name of method to optimize the objective function in LPP? (CO1) 1 (a) Simplex Method (b) Least Cost Method (c) Hungarian Method (d) None of the above The occurrence of degeneracy while solving a transportation problem means that (CO2) 1 1-c. (a) Total supply equals total demand (b) The solution so obtained is not feasible (c) The few allocations become negative (d) None of the above

1-d. The solution to a transportation problem with 'm' rows(supplies) and 'n' 1 columns(destination) is feasible if number of positive allocations are (CO2)

1

1

1

- (a) m+n
- (b) mn
- (c) m+n-1
- (d) m+n+1

1-e. What happen when maxi-min & mini-max values of the game are same (CO3)

- (a) No solution exists.
- (b) Solution is mixed.
- (c) Saddle point exists.
- (d) None of these
- 1-f. The method used for solving an assignment problem is called (CO3)
 - (a) Reduce matrix method
 - (b) MODI method
 - (c) Hungarian method
 - (d) None of these
- 1-g. Customer behavior in which he moves from one queue to another in a multiple channel 1 situation is (CO4)
 - (a) Balking
 - (b) Reneging
 - (c) Jockeying
 - (d) alternating
- 1-h. The total time required to complete all the jobs in a job sequencing problem is known as 1 (CO4)
 - (a) elapsed time
 - (b) idle time
 - (c) processing time
 - (d) processing order
- 1-i. The following goes on increasing with the increase in degree of maintenance efforts (CO5)
 - (a) Cost of down time
 - (b) Cost of spares and maintenance
 - (c) Labour and Overhead Cost

(d)	All	three
-----	-----	-------

	(d) All three	
1-j.	The objective of network analysis is to (CO5)	1
	(a) Minimize total project duration	
	(b) Minimize total project cost	
	(c) Minimize production delays, interruption and conflicts	
	(d) All three	
2. Attem	pt all parts:-	
2.a.	Write any four advantages of O.R. (CO1)	2
2.b.	Write the name of all methods for finding the initial basic solution of a transportation	2
	problem. (CO2)	
2.c.	How do we balance an unbalanced assignment problem? (CO3)	2
2.d.	What is traffic intensity? (CO4)	2
2.e.	Explain the term Group replacement policy in replacement model. (CO5)	2
	SECTION B 30	
3. Answe	er any <u>five</u> of the following:-	
3-a.	Use the Graphical Method, to Solve LPP	6
	Maximize $Z = 6 x_1 + 8 x_2$	
	subject to	
	$5x_1 + 10x_2 \leqslant 60$	
	$4x_1 + 4x_2 \leqslant 40$	
	$x_1, x_2 \ge 0$	
	(CO1)	

- 3-b. Write a short note on Scope of Operation Research. (CO1)
- 3-c. Obtain an initial basic feasible solution to the following transportation problem by using 6
 Least- cost method.

6

6

	А	В	D	ai
Ι	9	8	5	25
II	6	8	4	35
III	7	6	9	40
bj	30	25	40	
(CO2)				·

3-d. List the Various methods of finding the initial basic feasible solution of a transportation

problem. Which is the best method of solving transportation problem and why? (CO2)

- 3.e. Write a short note on 'Assignment Problem'. Give two areas of its applications. (CO3)
- 3.f. Find the sequences that minimizes the total time in hours required to complete the following 6 tasks:

Task	А	В	С	D	Е	F	G
Machine I	3	8	7	4	9	8	7
Machine II	4	3	2	5	1	4	3
Machine III	6	7	5	11	5	6	12

What is the minimum elapsed time? (CO4)

3.g. Following table gives the running costs(maintenance Costs) per year and resale prices of a 6 certain equipment whose purchase price is Rs. 5,000:

Year	1	2	3	4	5	6	7	8
Running								
costs(Rs.	1500	1600	1800	2100	2500	2900	3400	4000
)								
Resale								
value	3500	2500	1700	1200	800	500	500	500
(Rs.)								

At what year is the replacement due? (CO5)

4. Answer any one of the following:-

4-a. Explain the concept, scope and tools of O.R. as applicable to business and industry. (CO1) 10

4-b. Solve the LPP Maxz = $18x_1 + 24x_2$ Subject to $4x_1 + 2x_2 \le 8$, $2x_1 + 5x_2 \le 12$ $x_1, x_2 \ge 0$ (CO1)

5. Answer any one of the following:-

5-a. Determine an initial basic feasible solution to the following transportation problem using: (a) 10 matrix minima method, and (b) Vogel's method.

6

50

10

	А	В	С	D	Supply
Ι	1	2	1	4	30
II	1	3	2	1	50
III	4	2	5	9	20
Demand	20	40	30	10	100
(CO2)		•		•	

5-b. Solve the following unbalanced transportation problem by using MODI Method (symbols 10 have their usual meaning):

	D ₁	D ₂	D ₃	a _i
O ₁	4	3	2	10
O ₂	2	5	0	13
O ₃	3	8	6	12
bj	8	5	4	

(CO2)

6. Answer any one of the following:-

6-a. Solve the following assignment to find the maximum total expected sale:

10

			Area		
		Ι	Π	III	IV
	А	42	35	28	21
Salesman	В	30	25	20	15
	С	30	25	20	15
	D	24	20	16	12

(CO3)

- 6-b. Explain the following terms:
 - i) Players, Strategy
 - ii) Two person zero sum game
 - iii) Payoff matrix
 - iv) Saddle point
 - v) types of strategy. (CO3)

7. Answer any one of the following:-

7-a. Solve the following sequencing problem

Items	Machines							
	А	В	С	D	Е			
Ι	9	7	5	4	11			
II	8	8	6	7	12			

10

10

III	7	6	7	8	10
IV	10	5	5	4	8

(CO4)

- 7-b. With respect to the queue system explain the following
 - i. Input process
 - ii. Queue discipline
 - iii. Capacity of the system
 - iv. Holding time
 - v. Balking
 - vi. Jockeying. (CO4)
- 8. Answer any one of the following:-
- 8-a. Why does the problem of replacement arise? What is group replacement? When it is 10 economical? Explain with example. (CO5)
- 8-b. A project has the following time schedule.

10

F J -											
Activi	1-2	1-3	1-4	2-5	3-6	3-7	4-6	5-8	6-9	7-8	8-9
ty											
Durati											
on	2	2	1	4	8	5	3	1	5	4	3
(mont		2	1	-	0	5	5	1	5	-	5
hs)											

Construct the network and compute, Critical path and its duration. (CO5)

10