Printed Page:-	Subject Code:- ACSE0404				
	Roll. No:				
NOI	DA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA				
	(An Autonomous Institute Affiliated to AKTU, Lucknow)				
	B.Tech				
	SEM: IV - CARRY OVER THEORY EXAMINATION - SEPTEMBER 2022				
	Subject: Theory of Automata and Formal Languages				
Time: 3 Hours	s Max. Marks: 100				
General Instruct	tions:				
1. The question	paper comprises three sections, A, B, and C. You are expected to answer them as directed.				
2. Section A - Q	Question No- 1 is 1 mark each & Question No- 2 carries 2 mark each.				
3. Section B - Q	3. Section B - Question No-3 is based on external choice carrying 6 marks each.				
4. Section C - Q	Questions No. 4-8 are within unit choice questions carrying 10 marks each.				
5. No sheet show	uld be left blank. Any written material after a blank sheet will not be evaluated/checked.				
	SECTION A 20				
1. Attempt all p	earts:-				
1-a. For option	the following change of state in FA, which of the following codes is an incorrect 1 on? (CO1)				
	(a) δ (m, 1) = n				
	(b) $\delta(0, n) = m$				
	(c) δ (m,0) = ϵ				
	(d) s: accept = false; cin >> char;				
	if char = "0" goto n;				
1-b. Regu	ular expression for all strings starts with ab and ends with aba is				
	(a) aba*b*aba				
	(b) ab(ab)*aba				
	(c) ab(a+b)*aba				
	(d) All of the mentioned				
1-c. Reg	gular expressions are closed under (CO2)				
	(a) Union				
	(b) Intersection				

	(c) Kleen star	
	(d) All of the mentioned	
1-d.	denotes all strings of 0's and 1's. (CO2)	1
	(a) 0 1	
	(b) (0+1) *	
	(c) $(0+1)$	
	(d) 0 * 1	
1-e.	Which of the following does not belong to CFG? (CO3)	1
	(a) Terminal Symbol	
	(b) End Symbol	
	(c) Start symbol	
	(d) Non Terminal	
1-f.	Grammar is defined by number oftuples. (CO3)	1
	(a) 4	
	(b) 5	
	(c) 3	
	(d) 2	
1-g.	The PDA has following contents: (CO4)	1
	(a) Initial State	
	(b) Stack top alphabet	
	(c) transition function	
	(d) All of the mentioned	
1-h.	A given grammar is called ambiguous if (CO4)	1
	(a) It has only one production rules.	
	(b) It has two non terminals on the left hand side	
	(c) A PDA can be constructed	
	(d) None of the above	
1-i.	Turing machine was invented by: (CO5)	1
	(a) Alan Turing	
	(b) Turing man	
	(c) Turing taring	

(d) None of these 1-j. 1 In an standard turing machine $(Q, \Sigma, T, \delta, q0, b, F)$ the blank symbol b is (CO5) (a) in Σ -T (b) in T- Σ (c) TηΣ (d) none of the above 2. Attempt all parts:-2.a. Differentiate between NFA and DFA. 2 (CO1) 2.b. Write regular expression for language over $\Sigma = \{0, 1\}$ where every string contains 2 at least two 0's. (CO2) 2.c. Define CNF and GNF. (CO3) 2 Define 2 Stack PDA . (CO4) 2.d. 2 2.e. Define Church thesis. 2 **SECTION B** 30 3. Answer any five of the following:-Draw a DFA to accept string of 0's and 1's ending with the string 011. 3-a. (CO1) 6 3-b. Discuss the application of Finite Automata in String Matching. (CO1) 6 3-c. Draw NFA with ε transition for the R.E. (0+1)*011(0+1)*. 6 (CO2) 3-d. Describe and prove any 3 closure properties of regular languages (with example). (CO2) 6 3.e. Discuss the procedure to eliminate Null Productions and Unit Productions with help of an 6 example. (CO3) Construct a PDA for $\{a^n b^{2n+1} / n >= 1\}$. 3.f. (CO4) 6 Write short notes on: (1) Linear Bounded Automata (2) Universal Turing machine (CO5) 3.g. 6 SECTION C 50 4. Answer any one of the following:-Define Moore & Mealy Machines. Explain Various points of difference between Moore 4-a. 10 Machine and Mealy Machine. (CO1) Explain Chomsky Classification of Grammars in detail. 10 4-b. (CO1) 5. Answer any one of the following:-State Pumping Lemma for Non-Regular languages. Prove that the language L= (aⁿbⁿ where 5-a. 10 $n \ge 0$ is not regular. (CO2)

5-b.	what is the relationship between Finite automata and regular expressions. Discuss its applications also. (CO2)	10
6. Answer	any one of the following:-	
6-a.	What is meant by ambiguous grammar? Test whether the grammar is ambiguous or not. (CO3)	10
	$S \rightarrow AB$	
	$A\rightarrow$ aAb / ab / B	
	B→ abB / ∈	
6-b.	State the pumping lemma for context free languages. Show that the language,	10
	$L = \{0^n 1^n 2^n \mid n \ge 0\}$ is not a context free language. (CO3)	
7. Answer	any one of the following:-	
7-a.	Define push down automata? Explain acceptance of PDA with empty stack. Define Instantaneous description (ID) in PDA. (CO4)	10
7-b.	Differentiate between Deterministic PDA and Non Deterministic PDA. (CO4)	10
8. Answer	any one of the following:-	
8-a.	Design a Turing machine to compute the following a) Division of Two integers b) 2's complement of a given binary number (CO5)	10
8-b.	Show that the PCP with two lists $x = (b, bab^3, ba)$ and $y = (b^3, ba, a)$ has a solution. Give the solution sequence. (CO5)	10