

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

> B.Tech

SEM: II - CARRY OVER THEORY EXAMINATION - SEPTEMBER 2022
 Subject: Data Structures \& Algorithms

Time: 3 Hours
Max. Marks: 100

General Instructions:

1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed.
2. Section A - Question No- 1 is 1 marker \& Question No- 2 carries 2 mark each.
3. Section B-Question No-3 is based on external choice carrying 6 marks each.
4. Section C - Questions No. 4-8 are within unit choice questions carrying 10 marks each.
5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

1 Which of the following is incorrect? Algorithms can be represented: (CO1)
(a) as pseudo codes
(b) as syntax
(c) as programs
(d) as flowcharts

A function in which $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n})$), if there exist positive values k and c such that $f(n)>=c * g(n)$, for all $n>=k$. This notation defines as: (CO1)
(a) Worst Case
(b) Best Case
(c) Average Case
(d) None of the above

1-c. Consider an array $\mathrm{A}[20,10]$, assume 4 words per memory cell and the base address of array A is 100 . What is the address of $\mathrm{A}[11,5]$.

Assume row-major address? (CO2)
(a) 560
(b) 660
(c) 760
(d) 860

1-d. In a stack, if a user tries to remove an element from empty stack it is called \qquad . (CO2)
(a) Overflow
(b) Over sized
(c) Data Flow
(d) Underflow

1-e. Suppose a complete binary tree has height $\mathrm{h}>0$. The minimum no of leaf nodes possible in term of h is: (CO3)
(a) 1
(b) 2
(c) 3
(d) 4

1-f. In which traversal root node is visited at the last? (CO3)
(a) In-Order Traversal
(b) Post-Order Traversal
(c) Pre-Order Traversal
(d) None

1-g. A sort which iteratively passes through a list to exchange the first element with any element less than it and then repeats with a new first element. (CO4)
(a) Insertion sort
(b) Quick sort
(c) Selection sort
(d) Heap sort

1-h. How many comparisons are needed to sort an array of length 5 if selection sort is used to sort the array? (CO4)
(a) 5
(b) 20
(c) 10
(d) 1

1-i. What is the number of edges present in a complete graph having n vertices? CO5
(a) n *(n-1)
(b) $\left(\mathrm{n}^{*}(\mathrm{n}-1)\right) / 2$
(c) $\mathrm{n} *(\mathrm{n}+1)$
(d) n

> (a) Multi Graph
> (b) Open Graph
> (c) Simple Graph
> (d) Complete Graph

1-j. For a given graph G having v vertices and e edges which is connected and has no cycles, which of the following statements is true? (CO5)
2. Attempt all parts:-
2.a. How an algorithm can be robust? (CO1) 2
2.b. What do you mean by linked list? (CO1) 2
2.c. How many null nodes will a binary tree with 20 nodes have? 2
2.d. Define hashing. (CO5) 2
2.e. What is a directed graph? (CO5) 2

SECTION B 30
3. Answer any five of the following:-

3-a. What is a data structure? Why do we need to study data structures? (CO1) 6
3-b. What is recursion? Indicate its properties? (CO1) 6
3-c. What are the applications of stack? (CO2) 6
$\begin{array}{lll}\text { 3-d. } & 6 \\ \text { Circular Link List over Doubly Linked List and Singly Linked List. (CO2) }\end{array}$
$\begin{array}{lll}\text { 3.e. } & \text { Explain Inorder, Preorder and Postorder Traversal operation on Binary tree with example.m } & 6 \\ (\mathrm{CO} 3)\end{array}$
3.f. Sort the given values using Quick Sort. 65, 70, 75, 80, 85, 60, 55, 50,45,77,22,10. (CO4)
3.g. Explain Breadth First Search traversal of Graph using an example. (CO5)

SECTION C

4. Answer any one of the following:-

4-a. Explain Abstract Data Types in detail. Also mention the features of ADT. (CO1) 10
4-b. Define various asymptotic notations in detail. (CO1) 10
5. Answer any one of the following:-

5-a. Discuss Infix and Postfix expression. Write an algorithm for converting Infix expression into 10

5-b. How the queue is implemented by linked list? Explain with help of a program. (CO2)
6. Answer any one of the following:-

6-a. Create a Binary Search Tree for the following data and do in-order, Preorder and Post-order traversal of the tree. $50,60,25,40,30,70,35,10,5$ (CO3)
$\begin{array}{lll}\text { 6-b. Construct a tree for the given inorder and postorder traversals. (CO3) } & 10 \\ \text { Inorder : DGBAHEICF }\end{array}$
7. Answer any one of the following:-

7-a. What is insertion sort and what is its complexity? Explain the procedure of insertion sort 10
with an example. (CO4)
7-b. Explain Selection Sort with the help of an example. (CO4) 10
8. Answer any one of the following:-
$\begin{array}{lll}\text { 8-a. } & \text { What do you understand by BFS. Discuss with an appropriate example. Differentiate BFS } & 10 \\ \text { and DFS. (CO5) }\end{array}$
8-b. List various fundamental file organization techniques and explain each in brief.m (CO5)

