Subject Code:- ABT0101

Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech.

SEM: I - CARRY OVER THEORY EXAMINATION - SEPTEMBER 2022

Subject: Elementary Mathematics

Time: 3 Hours

General Instructions:

1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed.

2. Section A - Question No- 1 is 1 marker & Question No- 2 carries 2 mark each.

3. Section B - Question No-3 is based on external choice carrying 6 marks each.

4. Section C - Questions No. 4-8 are within unit choice questions carrying 10 marks each.

5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A 20

1. Attempt all parts:-

1-a. By solving the inequality 6x - 7 > 5, the answer will be (CO1)

1-b. The solution of $x^2 + x + 4 = 0$ is (CO1)

(a)
$$\frac{-1 \pm \sqrt{13i}}{2}$$
(b)
$$\frac{-1 \pm \sqrt{15i}}{2}$$
(c)
$$\frac{-1 \pm \sqrt{14i}}{2}$$
(d)
$$\frac{-1 \pm \sqrt{15}}{2}$$
(e)
$$\frac{-1 \pm \sqrt{15}}{2}$$
Evaluate $x \rightarrow 3 \frac{x^2 - 9}{x - 3}$. (CO2)

1-c.

Max. Marks: 100

1

1

1

Printed Page:-

	(a) 2	
	(b) 3	
	(c) 0	
	(d) 6	
1-d.	Differentiate a^x w.r.t. x, where a is a positive constant. (CO2)	1
	(a) a^x	
	(b) a ^x logx	
	(c) $a^{x} \log c$	
	(d) None of these	
1-e.	$\int_{0}^{\frac{\pi}{2}} \cos x dx \text{equals to (CO3)}$	1
	(a) 0	
	(b) $\frac{\pi}{2}$	
	(c) 1 $\underline{\pi}$	
	(d) 4	
1-f.	The value of $\int x\sqrt{1+x^2} dx$ is equal to (CO3)	1
	(a) $\frac{1+2x^2}{\sqrt{1+x^2}} + c$	
	(b) $\sqrt{1+x^2} + c$	
	(c) $3(1+x^2)^{3/2}+c$	
	(d) $\frac{1}{3}(1+x^2)^{3/2}+c$	
1-g.	$x\left(\frac{d^2y}{d^2y}\right)^2 + 4\left(\frac{dy}{d^2y}\right)^3 + 8y = 7$	1
	The order and degree of the differential equation: $(dx^2) (dx)$ is (CO4)	
	(a) 2 , 2	
	(b) 2 , 3	
	(c) 1 , 3	
	(d) 3, 2	

1**-**h.

 $y = e^{-3x}$ is a solution of the differential equation $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} - 6y = 0$ is (CO4)

1

- (a) True
- (b) False

- 1-i. If out of 10 selected students for an examination, 3 were of 20 years, age, 4 of 21 and 3 of 22 1 years, the average age of the group is (CO5)
 - (a) 22 years
 - (b) 21 years
 - (c) 21.5 years
 - (d) 20 years
- 1-j. In a certain code language, 732 means 'intelligent trained faculty' 285 means 'highly intelligent student', 816 means 'student and teacher'. Which numerical symbol in that code language stands for 'highly'? (CO5)
 - (a) 2
 - (b) 7
 - (c) 8
 - (d) 5
 - 2. Attempt all parts:-

2.a.	Solve the following quadratic equation (CO1)	2
	$x^2 + 15x + 50 = 0.$	
2.b.	Write the conditions for the existence of limit. (CO2)	2
2.c.	Evaluate $\int \log(x) dx$. (CO3)	2

- 2.d. Form the differential equation by eliminating arbitrary constant *a* from the equation 2 $x^2 + y^2 = a^2 \cdot (CO4)$
- 2.e. If in a certain code "RANGE" is coded as 12345 and "RANDOM" is coded as 123678. Then 2 the code for the word "MANGO" would be? (CO5)
 - SECTION B 30

3. Answer any five of the following:-

- 3-a. Numerator of the fraction is 2 less then denominator. If we lower the numerator of this 6 fraction by one and we increase denominator by 3, the fraction shall be equal ¹/₄. Determine the fraction. (CO1)
- 3-b. Find all pairs of consecutive odd positive integers both of which are smaller than 10 such 6 that their sum is more than 11. (CO1)
- 3-c. Differentiate $\sin(\cos x^2)$ with respect to x(CO2) 6

3-d. Find the derivative of
$$y = 9x^2 + \frac{3}{x} + 5 \tan^{-1}x$$
 with respect to x. (CO2) 6

3.e. Evaluate

6

1

$$\int \frac{x}{e^{x^2}} dx \, . \tag{CO3}$$

3.f. Find the general solution of
$$\frac{dy}{dx} = \frac{x+1}{2-y}$$
, $y \neq 2$. (CO4) 6

3.g. In an examination, 34% of the students failed in Mathematics and 42% failed in English. If 6
 20% of students failed in both the subjects, then find the percentage of students who passed.
 (CO5)

10

4. Answer any one of the following:-

4-a. Solve the inequality, 3x - 5 < x + 7 when (i) x is a natural number.

- (ii) x is a whole number.
- (II) x is a whole indificer.
- (iii) when x is an integer. (CO1)

4-b. Solve the following system inequalities graphically: $x + 2y \le 10$, $x + y \ge 1$, $x - y \le 10$ 0, $x \ge 0$, $y \ge 0$. (CO1)

5. Answer any one of the following:-

5-a. If
$$y = 3e^{2x} + 2e^{3x}$$
 then prove that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0.(CO2)$ 10

5-b. Find the maximum and minimum value if any, of the following function $f(x) = (2x-1)^2 + 3.(CO2)$ 10

6. Answer any one of the following:-

6-a. Find the area bounded by parabola
$$y^2 = 4x$$
 and a line $y = x$. (CO3) 10

6-b. Evaluate
$$\int e^{\log \sin x} \cos^3 x \, dx$$
 (CO3) 10

7. Answer any one of the following:-

7-a. Solve the differential Equation
$$x \frac{dy}{dx} = x + y$$
. (CO4)

7-b. Solve
$$3e^{x}\tan(y)dx + (2-e^{x})\sec^{2}(y)dy = 0$$
 given that $y(0) = \frac{\pi}{4}$. (CO4)

8. Answer any one of the following:-

8-a. (i) If the price of an item is decreased by 10% and then increased by 10%, then find the net 10 effect on the price of the item.

(ii) The average marks obtained by 40 students of a class is 86. If the 5 highest marks are removed, the average reduced by one mark. Find the average marks of the top 5 students.

(iii) Find the missing terms: 1, 2, 6, 7, 21, 22, 66, 67, ? (CO5)

Page 4 of 5

8-b. (i) Pankaj purchased an item for Rs. 7500 and sold it at the gain of 24%. From that amount 10 he purchased another item and sold it at the loss of 20%. What is his overall gain/loss?
(ii) The average of runs of a cricket player of 20 innings was 32. How many runs must he make in his next innings so as to increase his average of runs by 4 ?
(iii) In certain code language, ROCK=47 and LATE=38. Find the code for FOOL. (CO5)

Page 5 of 5