

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

> B.Tech

SEM: II - CARRY OVER THEORY EXAMINATION - SEPTEMBER 2022
 Subject: Engineering Mathematics-II

Time: 3 Hours
Max. Marks: 100

General Instructions:

1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed.
2. Section A - Question No- 1 is 1 marker \& Question No- 2 carries 2 marks each.
3. Section B-Question No-3 is based on external choice carrying 6 marks each.
4. Section C - Questions No. 4-8 are within unit choice questions carrying 10 marks each.
5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

1-a. Degree and order of the differential equation $x \frac{d^{2} y}{d x^{2}}+y \frac{d y}{d x}+4 y^{2}=1 \quad$ (CO1)
(a) $\operatorname{Ord}=2, \operatorname{Deg}=2$
(b) $\operatorname{Ord}=1, \mathrm{Deg}=2$
(c) $\operatorname{Ord}=2$, Deg $=1$
(d) $\operatorname{Ord}=2, \operatorname{Deg}=0$

1-b. General solution of the second order linear differential equation 1 $\left(d^{2} y / d x^{2}\right)-8(d y / d x)+16 y=0 \quad(\mathrm{CO} 1)$
(a) $(A+B x) e^{4 x}$
(b) $A+B e^{4 x}$
(c) $A e^{-4 x}+B e^{4 x}$
(d) $A-B x^{4 x}$

1-c. The coefficient ' a_{0} ' in a Fourier series for the function $f(x)=x$ in the interval $0<x<2 \pi$ is (CO2)
(a) π
(b) 0
(c) $2 \pi^{2}$
(d) 2π

1-d. For the series $\sum_{n=1}^{\infty} u_{n}$ of positive terms the Ratio test fails if $\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}$ is
(a) <1
(b) >1
(c) $=1$
(d) none of these

1-e. Laplace transform of $f(t)=5 e^{2 t}+2$ is (CO3)
(a) $\frac{5}{s-2}-\frac{1}{s}$
(b) $\frac{5}{s-2}+\frac{1}{2 s}$
(c) $\frac{5}{s-2}+\frac{2}{s}$
(d) None of these

1-f. Inverse Laplace of the function $f(s)=\frac{e^{-2 s}}{s} \quad$ (CO3)
(a) $u(t-2)$
(b) $u(t+2)$
(c) $-u(t+2)$
(d) $-u(t-2)$

1-g. If $\vec{F}=(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \widehat{k}$, curl of \vec{F} equal to (CO4)
(a) 0
(b) $\hat{i}+\hat{j}+\hat{k}$
(c) 3
(d) None of these

1-h. Find the unit normal at the surface $z=x^{2}+y^{2}$ at the point $(1,2,5)$ is
(a) $2 x+4 y$
(b) $2 x \hat{i}+4 y \hat{j}$
(c) $\frac{-2 x \hat{i}-4 y \hat{j}+\hat{k}}{\sqrt{21}}$
(d) None of these

1-i. A boy has coins in the denominations of ₹ 1 and ₹ 2 . If he has total 30 coins and
the value of coins is ₹ 48 . Find the number of ₹ 1 coins he has. (CO5)
(a) 18
(b) 10
(c) 12
(d) 14

1-j. The simple interest on a certain sum of money at 4% per annum for 4 years is Rs 80 more than the simple interest on the same sum of money for 3 years at 5% per annum. Find the sum ? (CO5)
(a) Rs 4000
(b) Rs 8000
(c) Rs 4030
(d) none of these
2. Attempt all parts:-
2.a. Find the Particular integral of the differential equation $\left(4 D^{2}+4 D-3\right) y=e^{2 x}$ (CO1)
2.b. Discuss the convergence of the sequence $\left\{a_{n}\right\}$ where $a_{n}=\left(\frac{n+1}{n}\right)$.(CO2)
2.c. Find Laplace transform of the function $F(t)=t e^{-4 t} \sin 3 t$.(CO3)
2.d. If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, then show that $\operatorname{grad}(r)=\frac{\vec{r}}{r}$.
(CO4)
2.e. After 2 years, the age of Karthi is 2 times the present age of Silambu. Preethi is 8 years elder than Silambu. Find the present age of Karthi, if the present age of Preethi is 23 years? (CO5)
SECTION B
3. Answer any five of the following:-

3-a. Solve $\frac{d x}{d t}+\frac{d y}{d t}+3 x=\sin t, \frac{d x}{d t}+y=\cos t$.(CO1)
3-b. Solve the following differential equation:
$x^{2} y^{\prime \prime}+x y^{\prime}-y=x^{2} e^{x} .(\mathrm{CO} 1)$
3-c. \quad Test the convergence of the series $\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\frac{7}{4.5 .6}+$ \qquad
3-d. Expand $f(x)=\pi x-x^{2}$ as a Fourier half range sine series in $0<x<\pi$ upto the first three terms. (CO2)
3.e. Evaluate the value of the integral $\int_{0}^{\infty} \frac{e^{-t} \sin t}{t} d t$.(CO3)
3.f. Find the directional derivative of the function $f=\left(x^{2}+y^{2}+x^{2}\right)^{-1} / 2$ at $(3,1,2)$ in direction of the vector $y z \hat{i}+z x \hat{j}+x y \hat{k}$. (CO4)
3.g. (i) A girl leaves from her home. She first walks 30 m in North-West direction and then 30 m
in South-West direction. Next, she walks 30 m in South-East direction. Finally, she turns towards her house. In which direction is she moving?
(ii) Kashish goes 30 m North, then turns right and walks 40 m , then again turns right and walks 20 m , then again turns right and walks 40 m . How far is he from his original position? (CO5)

> SECTION C
4. Answer any one of the following:-

4-a. Solve the differential equation in series : $2 x(1-x) y^{\prime \prime}+(1-x) y^{\prime}+3 y=0 \quad$ (CO1) 10
4-b. Solve the differential equations by method of variation of parameters $y^{\prime \prime}-y=\frac{2}{1+e^{x}} . \quad 10$ (CO1)
5. Answer any one of the following:-

5-a. Test the convergence of the series, $x+\frac{1 \cdot x^{3}}{2.3}+\frac{1.3 \cdot x^{5}}{2.4 \cdot 5}+\frac{1.3 \cdot 5 x^{3}}{2.4 .67}+\ldots \ldots \ldots$. (CO2)
5-b. Obtain the Fourier series to represent function $\mathrm{f}(x)=x+x^{2}$ in the interval $-\pi \leq x \leq \pi$. (CO2)
Hence show that (i) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots \ldots=\frac{\pi^{2}}{6}$

$$
\text { (ii) } \frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \ldots=\frac{\pi^{2}}{12}
$$

6. Answer any one of the following:-

6-a. Solve the following differential equation by using Laplace transform 10 $\frac{d^{2} y}{d t^{2}}+y=t \cos 2 t$, Given that $y(0)=y^{\prime}(0)=0$. (CO3)

6-b. By using Convolution theorem, find $L^{-1}\left\{\frac{s}{\left(s^{2}+4\right)\left(s^{2}+9\right)}\right\}$. (CO3)
7. Answer any one of the following:-

7-a. Apply Stokes theorem to evalaute $\int_{C}(x+y) d x+(2 x-z) d y+(y+z) d z$, where C is the boundary of the triangle with vertices $(2,0,0),(0,3,0),(0,0,6)$. (CO4)

7-b. \quad Evaluate by using the Divergence theorem $\iint_{S} \vec{F} . \hat{n} d S$, where $\vec{F}=\left(x+y^{2}\right) \hat{\imath}-2 x \hat{\jmath}+2 y z \hat{k} \quad 10$ and S is the surface of the plane $2 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=6$ in the first octant. (CO4)
8. Answer any one of the following:-

8-a. (i) Compound interest on a sum of money for 2 years at 4 per cent per annum is Rs. 2448 .
Find the simple interest of the same sum of money at the same rate of interest for 2 years?
(ii) The simple interest on a sum of money at 4% per annum for 2 years is 80 . Find the compound interest in the same sum for the same period? (CO5)

8-b. (i) Three vessels containing mixtures of milk and water are of capacities which are in the ratio $1: 2: 3$. The ratios of milk and water in the three vessels are $4: 1,3: 2$ and $2: 3$ respectively. If one-fourth contents of first vessel, one-third of that of second vessel and half of that of third vessel are mixed; what is the ratio of milk and water in the new mixture? (CO5)
(ii) A, B and C enter into a partnership by investing 1500,2500 and 3000 rupees respectively. A as manager gets one-tenth of the total profit and remaining profit is divided among the three in the ratio of their investment. If A's total share is Rs. 369, find the shares of B and C. (CO5)

