Printed Pa	ge:-	Subject Code:- AMTCSE0101 Roll. No:	
	NOIDA INSTITUTE OF ENGINEERING A (An Autonomous Institute Af M.T	filiated to AKTU, Lucknow)	
	SEM: II - CARRY OVER THEORY E	XAMINATION - JUNE (2021 - 2022)	
Time: 3	Subject: ADVANCED DATA STR Hours	UCTURES AND ALGORITHMS Max. Marks	: 70
General In	etructions		
 The que Section Section Section 	stion paper comprises three sections, A, B, and A - Question No- 1 is 1 marker & Question No- B - Question No-3 is based on external choice C - Questions No. 4-8 are within unit choice	e carrying 4 marks each.	
	SECTION	A 15	
1. Attempt	•	(001)	1
1-a.	Process of removing an element from stack (a) Create	is called(CO1)	1
	(b) Push		
	(c) Evaluation		
	(d) Pop		
1-b.	What is/are the disadvantages of implement	ing tree using normal arrays? (CO2)	1
	(a) difficulty in knowing children no		
	(b) difficult in finding the parent of a	ber of nodes possible before creation of trees	
	(d) difficult to implement	ser of nodes possible before creation of trees	
1-c.	A binary tree is a rooted tree but not an orde	red tree. (CO3)	1
	(a) TRUE		
4.1	(b) FALSE	(0.1)	
1-d.	The complexity of linear search algorithm is	(CO4)	1
	(a) O(n) (b) O(log n)		
	(c) O(n2)		
	(d) $O(n \log n)$		
1-e.		constructing a tree of choices called as? (CO5)	1
	(a) State-space tree		
	(b) State-chart tree(c) Node tree		
	(d) Backtracking tree		
2. Attempt	all parts:-		
2.a.	Write the name of any 5 data structure. (CO	1)	2
2.b.	(CO2)	six nodes. Put a different value in each node.	2
2.c.	Regarding implementation of Breadth First distance between two nodes present in the q	st Search using queues, what is the maximum ueue? (CO3)	2
2.d.	Define an algorithm? What is the need for the		2
2.e.	State the applications of backtracking? (CO:	5)	2

SECTION B 20

3. Answe	r any <u>five</u> of the following:-	
3-a.	Describe abstract data type with example. (CO1)	4
3-b.	Write the prefix and postfix form for: A+B*(C-D)/(E-F) (CO1)	4
3-c.	Given a set of input representing the nodes of a binary tree, write a non-recursive algorithm that must be able to output the three traversal orders. (CO2)	4
3-d.	Write a Binary Search program. (CO2)	4
3.e.	Write an algorithm for depth first search and apply it on an un-directed graph. (CO3)	4
3.f.	Write an algorithm for finding maximum element of an array; perform best and average case complexity with appropriate order notations? (CO4)	4
3.g.	Explain NP complete problems with example? (CO5)	4
	SECTION C 35	
4. Answe	r any <u>one</u> of the following:-	
4-a.	Convert the following infix expression into a postfix expression i) (((A/(B*C))+(D*E))-(A*C)) ii) A^B*C-D+E/F/(G+H) (CO1)	7
4-b.	Write a c function i)to insert an element at the rear end of a queue ii)to delete an element from the front end of the queue (CO1)	7
5. Answe	r any <u>one</u> of the following:-	
5-a.	What are B-trees? Construct a B-Tree of order 3 for the following set of Input data: (CO2) 69, 19, 43, 16, 25, 40, 132, 100, 145, 7, 15, 18	7
5-b.	Construct AVL Tree for the following sequence of numbers- (CO2) 50, 20, 60, 10, 8, 15, 32, 46, 11, 48	7
6. Answe	r any <u>one</u> of the following:-	
6-a.	Explain the Floyd Warshall algorithm with example. (CO3)	7
6-b.	Explain Kruskal's Algorithm With an example. (CO3)	7
7. Answe	r any <u>one</u> of the following:-	
7-a.	Describe the Travelling salesman problem & discuss how to solve it using Dynamic Programming? (CO4)	7
7-b.	Explain the 0/1 knapsack with an algorithm? (CO4)	7
8. Answe	r any <u>one</u> of the following:-	
8-a.	Discuss Non-Deterministic algorithms in detail with examples? (CO5)	7
8-b.	Discuss Amortized Analysis in detail with examples? (CO5)	7