Printed Page:-

Subject Code:- ACSIOT0301 Roll. No:

	NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow)	
	B.Tech. SEM: HL CARRY OVER THEORY EXAMINATION JUNE (2021, 2022)	
	Selvi: III - CARR FOVER THEOR FEXAMINATION - JUNE (2021 - 2022) Subject: Data Structures and Algorithms Design	
Time: 3	Hours Max. Marks:	100
General In	structions:	
 The que Section Section Section Section 	 estion paper comprises three sections, A, B, and C. You are expected to answer them as directed. A - Question No- 1 is 1 marker & Question No- 2 carries 2 mark each. B - Question No-3 is based on external choice carrying 6 marks each. C - Questions No. 4-8 are within unit choice questions carrying 10 marks each. et should be left blank. Any written material after a blank sheet will not be evaluated/checked. 	
	SECTION A 20	
1. Attempt	t all parts:-	
1	Which of the following is not the correct statement for a stack data structure?[CO1]	1
	(a) Arrays can be used to implement the stack	
	(b) Stack follows FIFO	
	(c) Elements are stored in a sequential manner	
	(d) Top of the stack contains the last inserted element	
1	To represent hierarchical relationship between elements, which data structure is suitable?[CO1]	1
	(a) Dequeue	
	(b) Prioriy	
	(c) Tree	
	(d) Graph	
1-c.	The algorithms like merge sort, quick sort and binary search are based on. [CO2]	1
	(a) Greedy algorithm	
	(b) Divide and Conquer algorithm	
	(c) Hash table	
	(d) Parsing	
1-d.	Which of the following algorithm design techniques is used in the quick sort algorithm?[CO2]	1
	(a) Dynamic programming	
	(b) Backtracking	
	(c) Divide and conquer	
	(d) Greedy method	
1-e.	A linear collection of data elements where the linear node is given by means of pointer is called?[CO3]	1
	(a) Node list	
	(b) Unordered list	
	(c) Primitive list	
	(d) Linked list	
1-f.	The time complexity of enqueue operation in Queue is[CO3]	1
	(a) O(1)	

(b) O(n)

	(c) O(logn)	
	(d) O(nlogn)	
1	A Binary Tree can have [CO4]	1
	(a) Can have 2 children	
	(b) Can have 1 children	
	(c) Can have 0 children	
	(d) All of the above	
1	A complete binary tree with the property that the value at each node is at least as large as value of its children is known as:[CO4]	s the 1
	(a) Binary Search Tree	
	(b) AVL Tree	
	(c) Completely Balance Tree	
	(d) Max-Heap	
1	A graph with all vertices having equal degree is known as a[CO5]	1
	(a) Multi Graph	
	(b) Regular Graph	
	(c) Simple Graph	
1	(d) Complete Graph	1
1	Floyd Warshall Algorithm used to solve the shortest path problem has a time complexit	ty of I
	(a) O(V*V)	
	(b) $O(V*V*V)$	
	(c) O(E*V)	
0	$(d) O(E^*E)$	
2. Attempt	all parts:-	
2.a.	What are the advantages in the array implementation of list?[CO1]	2
2.b.	Write any two characteristics of Greedy Algorithm? [CO2]	2
2.c.	What is the Complexity of Algorithm?[CO3]	2
2.d.	Mention various points of difference between complete binary tree and almost comp binary tree.[CO4]	plete 2
2.e.	Explain Breadth First Search traversal of Graph using an example.[CO5]	2
	SECTION B	30
3. Answer	any <u>five</u> of the following:-	
3	Explain Selection Sort with the help of example.[CO1]	6
3	Define the terms in brief: Time complexity, Space Complexity, Big O Notation.[CO1]	6
3	Mention some methods for choosing the pivot element in quick sort?[CO2]	6
3	Sort the sequence 2,4,5,7,1,2,3,6 using Merge sort. Show all the required steps.[CO2]	6
3.e.	Write and explain algorithm for Linear search.[CO3]	6
3.f.	Explain Inorder, Preorder and Postorder Traversal operation on Binary tree with exam [CO4]	nple. 6
3.g.	Discuss following with reference to graphs. (i) Directed graph (ii) Undirected graph Degree of vertex (iv)Null graph (v) Acyclic Graph [CO5]	(iii) 6
	SECTION C	50
4. Answer	any <u>one</u> of the following:-	

4-a. Interpret an algorithm to sort a set of 'N' numbers using bubble sort and demonstrate the 10 sorting steps for the following set of numbers: 88,11,22,44,66,99,32,67,54,10.[CO1]

4-b.	What is queue? Why it is known as FIFO? Write an algorithm to insert and delete an element from a simple queue with Example.[CO1]	10
5. Answe	er any <u>one</u> of the following:-	
5-a.	Explain working of binary search and linear search technique with example in details.[CO2]	10
5-b.	What is dynamic programming? Design an algorithm to solve the 0/1 knapsack problem using Dynamic programming.[CO2]	10
6. Answe	er any <u>one</u> of the following:-	
6-a.	Write a procedure which removes the first element of a list and adds it to the end of the list without changing any values in INFO.(Only START and LINK may be changed.[CO3]	10
6-b.	Why doubly linked list is better than linked list? Justify it by taking suitable example.[CO3]	10
7. Answe	er any <u>one</u> of the following:-	
7-a.	Construct a height balanced Binary search tree by performing following operations: [CO4] Step 1: Insert 19, 16, 11, 17, 25, 6, 13 Step 2: Insert 3 Step 3: Delete 16	10
7-b.	Write function / program for Heapsort . Explain with example . [CO4]	10
8. Answe	er any <u>one</u> of the following:-	
8	Discuss the prim's algorithm for minimum spanning tree. Give an example.[CO5]	10
8	Explain Dijkstra Algorithm. Discuss its applications in real life.[CO5]	10