Printed	Page:- Subject Code:- ACSE0306
	NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA
	B.Tech.
	SEM: III - CARRY OVER THEORY EXAMINATION - JUNE (2021 - 2022) Subject: Discrete Structures
Time:	3 Hours Max. Marks: 100
General 1. The q 2. Section 3. Section 4. Section 5. No sh	Instructions: Juestion paper comprises three sections, A, B, and C. You are expected to answer them as directed. In A - Question No- 1 is 1 marker & Question No- 2 carries 2 mark each. In B - Question No-3 is based on external choice carrying 6 marks each. In C - Questions No. 4-8 are within unit choice questions carrying 10 marks each. The should be left blank. Any written material after a blank sheet will not be evaluated/checked.
	SECTION A 20
1. Atten	npt all parts:-
1-a.	Two sets are called disjoint if there is the empty set. (CO1)1
	(a) Union
	(b) Difference
	(c) Intersection
	(d) Complement
1-b.	For two sets C and D the set $(C - D) \cap D$ will be (CO1) 1
	(a) C
	(b) D
	(c) Φ
	(d) None of the mentioned
1-c.	Let '*' be defined on the set N. Which of the following are both commutative and 1 associative? (CO2)
	(a) $a*b=a+b$
	(b) $a*b=a-b$
	(c) $a*b=ab$
	(d) $a*b=a$
1-d.	Which of the following is not a type of binary operation? (CO2)1
	(a) Transitive
	(b) Commutative
	(c) Associative
	(d) Distributive
1-e.	Which of the following relation is a partial order as well as an equivalence relation? (CO3)
	(a) equal to(=)
	(b) less than($<$)
	(c) greater than($>$) (d) not equal to(l_{-})
1 £	(d) not equal to($!=$)
1-I.	Let G be the graph defined as the Hasse diagram for the \subseteq relation on the set S{1, 1 2,, 18}. How many edges are there in G? (CO3)
	(a) 43722
	(b) 2359296
	(c) 6487535

(d) 131963

- 1-g. What is the value of x after this statement, assuming the initial value of x is 5? 'If x equals to 1 one then x=x+2 else x=0. (CO4)
 - (a) 1
 - (b) 3
 - (c) 0
- 1-h.Let P: If Sahil bowls, Saurabh hits a century.; Q: If Raju bowls, Sahil gets out on first ball.1Now if P is true and Q is false then which of the following can be true? (CO4)
 - (a) Raju bowled and Sahil got out on first ball
 - (b) Raju did not bowled
 - (c) Sahil bowled and Saurabh hits a century
 - (d) Sahil bowled and Saurabh got out
- 1-i. Another name for the directed graph is (CO5)
 - (a) Direct graph
 - (b) Bigraph
 - (c) Dir-graph
 - (d) Digraph

1-j. The number of edges in a regular graph of degree 46 and 8 vertices is. (CO5)

- (a) 123
- (b) 187
- (c) 184
- (d) 186
- 2. Attempt all parts:-

2.a.	Define reflexive relation. (CO1)		2
2.b.	If $(G, *)$ is a group and a is an element in G, such that a $*a = a$, then show that $a = e$, we is identity element in G. (CO2)	here	2
2.c.	Write any two properties of lattices. (CO3)		2
2.d.	Show that $\neg(\neg p)$ and p are logically equivalent. (CO4)		2
2.e.	Describe is complete graph?(CO5)		2
	SECTION B	30	

3. Answer any five of the following:-

3-a.	If A, B, and C are sets, using example show that: $A \cup B \cup C = A + B + C - A \cap B - A$	6
	$\Pi C = B \Pi C + A \Pi B \Pi C. (COI)$	
0.1		

- 3-b. Let f be the function from {a, b, c} to {1, 2, 3} such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f 6 invertible, and if it is, what is its inverse? (CO1)
- 3-c. Let G be a group. Suppose that the number of elements in G of order 5 is 28. Determine the 6 number of distinct subgroups of G of order 5. (CO2)
- 3-d. Let x,y be generators of a group G with relation: $xy^2=y^3x...(1)$, $yx^2=x^3y...(2)$. Prove that G 6 is the trivial group. (CO2)
- 3.e. Draw the Hasse diagram of (A, \leq) , where A= {3,4,12,24,48,72} and relation ≤ 6 be such that a \leq b if a divides b. (CO3)
- 3.f. Use a truth table to verify the distributive law $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$. (CO4) 6
- 3.g. (i)Give an example of bipartite graph. (ii) Graph having neither Euler nor Hamiltonian 6 circuit. (CO5)

1

1

50

4. Answer any one of the following:-

4-a. Explain the idea of Subset and Super set with example. State how a Null set can be a subset 10

of Singleton set. (CO1)

4-b. Prove the Distributive law of algebraic structure for Union and Intersection. (CO1)

5. Answer any one of the following:-

5-a. Let G be a group and let H1,H2 be subgroups of G such that H1 is not a subset of H2 and H2 10 is not a subset of H1. (a) Prove that the union H1 U H2 is never a subgroup in G. (b) Prove that a group cannot be written as the union of two proper subgroups.(CO2)

10

5-b. Let G be an abelian group. Let a and b be elements in G of order m and n, respectively. 10 Prove that there exists an element c in G such that the order of c is the least common multiple of m and n. Also determine whether the statement is true if G is a non-abelian group.(CO2)

6. Answer any one of the following:-

- 6-a. for each of following expression . Find the minimum sum of product using k-map. 1). A'B'C' 10 + AB'C' + A'BC' + ABC' (CO3) .
- 6-b. Answer these questions for the poset({3, 5, 9, 15,24, 45},). (CO3)
 10

 i. Find the minimal elements.
 ii. Is there a greatest element?
 iii. Is there a least element?
 iv. Find all upper bounds of {3, 5}.
- 7. Answer any one of the following:-
- 7-a. Use proof by contradiction to prove that the sum of an irrational number and a rational 10 number is irrational. (CO4)
- 7-b. Show that each of these conditional statements is a tautology by using truth tables. (CO4) 10

a) $(p \land q) \rightarrow p$, b) $p \rightarrow (p \lor q)$, c) $\neg p \rightarrow (p \rightarrow q)$, d) $(p \land q) \rightarrow (p \rightarrow q)$, e) $\neg (p \rightarrow q) \rightarrow p$, f) $\neg (p \rightarrow q) \rightarrow \neg q$

8. Answer any <u>one</u> of the following:-

- 8-a. Define planar graph. Prove that for any connected planar graph, v e + r = 2 Where v, e, r is 10 the number of vertices, edges, and regions of the graph respectively. (CO5)
- 8-b. (a) Suppose a graph G contains two disctinct paths from vertex u to a vertex v. Show that G 10 has a cycle. (b) Find the number of connected graph with 4 vertices. Also draw the graph. (CO5)