NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)
B.Tech.

SEM: III - CARRY OVER THEORY EXAMINATION - JUNE (2021-2022)
Subject: Discrete Structures
Max. Marks: 100
Time: 3 Hours
General Instructions:

1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed.
2. Section A - Question No- 1 is 1 marker \& Question No- 2 carries 2 mark each.
3. Section B - Question No-3 is based on external choice carrying 6 marks each.
4. Section C - Questions No. 4-8 are within unit choice questions carrying 10 marks each.
5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

1-a. Two sets are called disjoint if there \qquad is the empty set. (CO1)
(a) Union
(b) Difference
(c) Intersection
(d) Complement

1-b. \quad For two sets C and D the set $(C-D) \cap D$ will be \qquad (CO1)
(a) C
(b) D
(c) Φ
(d) None of the mentioned

1-c. Let '*' be defined on the set N . Which of the following are both commutative and associative? (CO2)
(a) $a * b=a+b$
(b) $a * b=a-b$
(c) $a * b=a b$
(d) $a * b=a$

1-d. Which of the following is not a type of binary operation? (CO2)
(a) Transitive
(b) Commutative
(c) Associative
(d) Distributive

1-e. Which of the following relation is a partial order as well as an equivalence relation? (CO3)
(a) equal to(=)
(b) less than ($<$)
(c) greater than(>)
(d) not equal to(!=)

1-f. Let G be the graph defined as the Hasse diagram for the \subseteq relation on the set $\mathrm{S}\{1,1$ $2, \ldots, 18\}$. How many edges are there in G ? (CO3)
(a) 43722
(b) 2359296
(c) 6487535
(d) 131963

1-g. What is the value of x after this statement, assuming the initial value of x is 5 ? 'If x equals to one then $\mathrm{x}=\mathrm{x}+2$ else $\mathrm{x}=0$. $(\mathrm{CO} 4)$
(a) 1
(b) 3
(c) 0

1-h. Let P: If Sahil bowls, Saurabh hits a century.; Q: If Raju bowls, Sahil gets out on first ball. 1 Now if P is true and Q is false then which of the following can be true? (CO4)
(a) Raju bowled and Sahil got out on first ball
(b) Raju did not bowled
(c) Sahil bowled and Saurabh hits a century
(d) Sahil bowled and Saurabh got out

1-i. Another name for the directed graph is (CO5)
(a) Direct graph
(b) Bigraph
(c) Dir-graph
(d) Digraph

1-j. The number of edges in a regular graph of degree 46 and 8 vertices is. (CO5)
(a) 123
(b) 187
(c) 184
(d) 186
2. Attempt all parts:-
2.a. Define reflexive relation. (CO1) 2
2.b. If $(\mathrm{G}, *)$ is a group and a is an element in G , such that $\mathrm{a} * \mathrm{a}=\mathrm{a}$, then show that $\mathrm{a}=\mathrm{e}$, where 2 e is identity element in G . (CO2)
2.c. Write any two properties of lattices. (CO3) 2
2.d. Show that $\neg(\neg p)$ and p are logically equivalent. (CO4) 2
2.e. Describe is complete graph?(CO5) 2 SECTION B 30
3. Answer any five of the following:-

3-a. If A, B, and C are sets, using example show that: $A \cup B \cup C=A+B+C-A \cap B-A \quad 6$ $\cap C-B \cap C+A \cap B \cap C$ (CO1)
3-b. Let f be the function from $\{a, b, c\}$ to $\{1,2,3\}$ such that $f(a)=2, f(b)=3$, and $f(c)=1$. Is $f \quad 6$ invertible, and if it is, what is its inverse? (CO1)
3-c. Let G be a group. Suppose that the number of elements in G of order 5 is 28 . Determine the 6 number of distinct subgroups of G of order 5. (CO2)
3-d. Let x, y be generators of a group G with relation: $x y^{2}=y^{3} x \ldots$ (1), $y x^{2}=x^{3} y \ldots$ (2). Prove that $G \quad 6$ is the trivial group. (CO2)
3.e. Draw the Hasse diagram of (A, \leq), where $A=\{3,4,12,24,48,72\}$ and relation ≤ 6
be such that $a \leq b$ if a divides b. (CO3)
3.f. Use a truth table to verify the distributive law $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$ (CO4) 6
$\begin{array}{ll}\text { 3.g. (i)Give an example of bipartite graph. (ii) Graph having neither Euler nor Hamiltonian } & 6 \\ \text { circuit. (CO5) }\end{array}$ circuit. (CO5)

SECTION C
4. Answer any one of the following:-

4-a. Explain the idea of Subset and Super set with example. State how a Null set can be a subset 10
of Singleton set. (CO1)
4-b. Prove the Distributive law of algebraic structure for Union and Intersection. (CO1)
5. Answer any one of the following:-

5-a. Let G be a group and let H1,H2 be subgroups of G such that H 1 is not a subset of H 2 and H 2 is not a subset of H1. (a) Prove that the union H1 U H2 is never a subgroup in G. (b) Prove that a group cannot be written as the union of two proper subgroups.(CO2)
5-b. Let G be an abelian group. Let a and b be elements in G of order m and n, respectively. Prove that there exists an element c in G such that the order of c is the least common multiple of m and n . Also determine whether the statement is true if G is a non-abelian group.(CO2)
6. Answer any one of the following:-

6-a. for each of following expression. Find the minimum sum of product using k-map. 1). $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ $+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{ABC}$ (CO 3) .
6-b. Answer these questions for the poset(\{3, 5, 9, 15,24, 45\},). (CO3)
i. Find the minimal elements.
ii. Is there a greatest element?
iii. Is there a least element?
iv. Find all upper bounds of $\{3,5\}$.
7. Answer any one of the following:-

7-a. Use proof by contradiction to prove that the sum of an irrational number and a rational number is irrational. (CO4)
7-b. \quad Show that each of these conditional statements is a tautology by using truth tables. (CO4)
a) $(p \wedge q) \rightarrow p$,
b) $p \rightarrow(p \vee q)$,
c) $\neg p \rightarrow(p \rightarrow q)$,
d) $(p \wedge q) \rightarrow(p \rightarrow q)$,
e) $\neg(p \rightarrow q) \rightarrow p, f) \neg(p \rightarrow q) \rightarrow \neg q$
8. Answer any one of the following:-

8-a. Define planar graph. Prove that for any connected planar graph, $v-e+r=2$ Where v, e, r is 10 the number of vertices, edges, and regions of the graph respectively. (CO5)
8-b. (a) Suppose a graph G contains two disctinct paths from vertex u to a vertex v. Show that G has a cycle. (b) Find the number of connected graph with 4 vertices. Also draw the graph. (CO5)

