NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)
B.Tech.

SEM: III - CARRY OVER THEORY EXAMINATION - JUNE (2021-2022)
Subject: Formal Language \& Automata Theory
Time: 3 Hours
Max. Marks: 100
General Instructions:

1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed.
2. Section A - Question No- 1 is 1 marker \& Question No- 2 carries 2 mark each.
3. Section B - Question No-3 is based on external choice carrying 6 marks each.
4. Section C - Questions No. 4-8 are within unit choice questions carrying 10 marks each.
5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

1 Finite Automata has (CO1)
(a) Unlimited memory
(b) No memory at all
(c) Limited Memory
(d) None of these

1 Chomsky Hieararchy is categorized in how many categories (CO1)
(a) 3
(b) 2
(c) 1
(d) 4

1-c. Which of the following does not belong to CFG?(CO2)
(a) Terminal Symbol
(b) End Symbol
(c) Start symbol
(d) Non Terminal

1-d. Type-3 grammars generate \qquad languages.(CO2)
(a) Regular
(b) context-free
(c) context-sensitive
(d) All of above

1-e. Universal Turing machine influenced the concept of (CO3)
(a) Stored program computers
(b) Interpretive implementation of programming language
(c) Computability
(d) All of these

1-f. Turing machine was invented in \qquad by Alan Turing.(CO3)
(a) 1938
(b) 1936
(c) 1836
(d) 1838
$1-\mathrm{g}$. Which of the following statements are correct?(CO4)
(a) A language ' L ' is decidable if it is recursive language.
(b) A language ' L ' is decidable if it is recursive enumerable language.
(c) A language ' L ' is undecidable if it is recursive language.
(d) A language ' L ' is not undecidable if it is recursive enumerable language.

1-h. Halting problem is an example for? (CO4)
(a) Decidable problem
(b) undecidable problem
(c) complete problem
(d) traceable problem

1-i. Which of the following is true about NP-Complete and NP-Hard problems.(CO5)
(a) If we want to prove that a problem X is NP-Hard, we take a known NP-Hard problem Y and reduce Y to X
(b) The first problem that was proved as NP-complete was the circuit satisfiability problem.
(c) NP-complete is a subset of NP Hard
(d) All of the above

1-j. Which of the following are the examples of NP-complete Problem. (C05)
(a) Knapsack problem
(b) Hamiltonian path problem.
(c) Subset sum problem.
(d) All of above
2. Attempt all parts:-
2.a. Explain the transition diagram for deterministic finite automata in brief. (CO1) 2
2.b. Define Pushdown Automata . (CO2) 2
2.c. Write short note on Universal Turing Machine. (C03) 2
2.d. Define post correspondence problem. (CO4) 2
2.e. Define NP problems. (CO5) 2 SECTION B 30
3. Answer any five of the following:-

3-a. State Pumping Lemma and prove that $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mid \mathrm{n}\right.$ is a perfect square $\}$ is not regular (CO1) 6
3-b. Explain parse tree in detail. (CO1) 6
3-c. Define ambiguity.? Show that the grammar
with following production is ambiguous.
A \rightarrow IA (A) (C02)
3-d. Correspondence between PDA and CFG. Justify the statement. (CO2) 6
3.e. Arrange in descending order for the finite automaton, linear bounded automata, pushdown
automaton and Turing machine according to their power and signify the importance of it.
(CO3)
3.f. Find whether the lists $\mathrm{M}=(\mathrm{ab}$, bab, bbaaa) and $\mathrm{N}=(\mathrm{a}$, ba, bab) have a Post Correspondence 6
Solution? (CO4)
3.g. Prove Cook Leven Theorem. (CO5)

SECTION C 50
4. Answer any one of the following:-

4-a. Define Grammar? What are the tuples?Illustrate with an example. (CO1) 10
4-b. Find all strings of length 5 or less in the regular set represented by the following regular 10 expressions:
a) $(a b+a) *(a a+b)$
b) $\left(a^{*} b+b^{*} a\right)^{*} a$
c) $a^{*}+(a b+a)^{*}(C O 1)$
5. Answer any one of the following:-

5-a. Write the steps to convert CFG to GNF form. (CO2) 10
5-b. Construct a PDA which recognizes all strings that contain equal number of 0 's and 1's (C02) 10
6. Answer any one of the following:-

6-a. If L and L' are both recursively enumerable. Show that L and L^{\prime} are recursive. (CO3) 10
6-b. Define a Turing Machine. With a neat diagram explain the working
of a Turing Machine. (CO3)
7. Answer any one of the following:-
$\begin{array}{ll}\text { 7-a. } & \begin{array}{l}\text { Define the recursive languages. Do you agree that every recursive language is recursively } \\ \text { enumerable languages. Justify your answer. (CO4) }\end{array}\end{array}$
7-b. Explain the Rice theorem and its relevance with Turing Machine. (CO4) 10
8. Answer any one of the following:-

8-a. Compare and contrast Tautology and SAT. (CO5) 10
8-b. How to show that a problem does/does not have any solution? 10 efficient algorithm? (CO5)

