Printed Page:-

Subject Code:- AME0404 Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech

SEM: IV - THEORY EXAMINATION (2021 - 2022)

Subject: Applied Thermodynamics

Time: 3 Hours

General Instructions:

- 1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed.
- 2. Section A Question No- 1 is 1 marker & Question No- 2 carries 2 mark each.
- 3. Section B Question No-3 is based on external choice carrying 6 marks each.
- 4. Section C Questions No. 4-8 are within unit choice questions carrying 10 marks each.
- 5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

- 1-a. Incomplete combustion of hydrocarbon fuels. (CO1)
 - (a) yields carbon dioxide and water vapour
 - (b) takes place due to too much air
 - (c) takes place due to an insufficient amount of air
 - (d) yields hydrogen and carbon dioxide
- 1-b. The total quantity of heat liberated when a unit mass (or volume) of a fuel is burnt 1 completely is called its. (CO1)
 - (a) Heat value
 - (b) Calorific value
 - (c) Burning value
 - (d) Combustion value
- 1-c. The difference between Cornish boiler and Lancashire boiler is. (CO2)
 - (a) Former is fire tube type and latter is water tube type boiler
 - (b) Former is water tube type and latter is fire tube type boiler
 - (c) Former contain one fire tube type and latter contains two water tube type boiler
 - (d) None of the mentioned
- 1-d. The function of fusible plug is (CO2)
 - (a) To control the flow of steam
 - (b) To regulate the supply of water
 - (c) To put off the fire when the level of water falls to an unsafe level
 - (d) To empty the boiler whenever required
- 1-e. The efficiency of a Rankine cycle may be expected to (CO3)
 - (a) increase with decreasing temperature of heat rejection
 - (b) decrease with decreasing temperature of heat rejection
 - (c) decrease with increasing temperature of heat rejection
 - (d) increase with increasing exhaust pressure
- 1-f. If pressure ratio in Brayton cycle increases... (CO3)
 - (a) the efficiency of the cycle increases
 - (b) the efficiency of the cycle decreases
 - (c) there is no any effect on the efficiency of the cycle
 - (d) may increase or decrease

Max. Marks: 100

20

1

1

1

1

- 1

1

1-g.	Nozzle efficiency is described as(CO4)	1
	(a) isentropic heat drop/useful heat drop	
	(b) useful heat drop/isentropic heat drop	
	(c) saturation temperature/supersaturation temperature	
	(d) supersaturation temperature/saturation temperature	
1-h.	In a reaction turbine(CO4)	1
	(a) the steam is allowed to expand in the nozzle, where it gives a high velocity enters the moving blades	y before it
	(b) the expansion of steam takes place partly in the fixed blades and partly in the blades	ne moving
	(c) the steam is expanded from a high pressure to a condenser pressure in one nozzles	e or more
	(d) the pressure and temperature of steam remains constant	
1-i.	Digital steam turbine control system (CO5)	1
	(a) Maintains the safety and reliability of the turbine	
	(b) Quickly respond to loss-of-load or emergency	
	(c) Lead to failures due to the complexity of the system	
	(d) All of these	
1-j.	Boiler parameters are expressed by (CO5)	1
	(a) tonnes/hr. of steam	
	(b) pressure of steam in kg/cm2	
	(c) temperature of steam in °C	
	(d) all of these	
2. Attempt	all parts:-	
2.a.	Describe different types of fuel. (CO1)	2
2.b.	Enlist the requirements of a good boiler. (CO2)	2
2.c.	Why Rankine cycle is use instead of Carnot cycle for steam power plant? (CO3)	2
2.d.	What is degree of reaction in turbines? (CO4)	2
2.e.	State the function of automatic spray nozzles. (CO5)	2
	SECTION B	30
3. Answer	any <u>five</u> of the following:-	
3-а.	Calculate stoichiometric air/fuel ratio by mass and percentage composition of product combustion per kg of propanol. (CO1)	ts of 6
3-b.	Calculate the total amount of heat energy required to convert 100 g of ice at -20 degree completely into water at 100 degree C. Specific heat capacity of ice = 2.1 J/g/K , specific capacity of water = 4.2 J/g/K , specific latent heat of fusion of ice = 336 J/g . (CO1)	ee C 6 heat
3-с.	Derive a relation for the condition of maximum discharge through the chimney of height (CO2)	t H. 6
3-d.	What are the advantages and disadvantages of artificial draught? (CO2)	6
3.e.	What is the need of intercooling in Gas turbine? Draw schematic diagram of combination regeneration and intercooling in Brayton cycle. Also draw T-s plot. (CO3)	on of 6
3.f.	What do you understand by governing of steam turbines? State various methods used governing of steam turbine. (CO4)	l for 6
3.g.	State objectives of using a) digital steam turbine control b) electronic control of gas turengines. (CO5)	bine 6
	SECTION C	50

4. Answer any one of the following:-

- 4-a. A hydrocarbon fuel when burned with air gave the following analysis, Carbon dioxide : 10 11.94%, Oxygen : 2.26%, Carbon monoxide: 0.41%, Nitrogen : 83.39%. Assume air to have 21% oxygen, determine: a) the air-fuel ratio on mass basis b) the percent of carbon and hydrogen in the fuel on mass basis c) percentage of theoretical air supplied. (CO1)
- 4-b. A sample of coal supplied to a boiler has following composition by mass: Carbon= 88%, 10 Hydrogen=5%, Oxygen=3%, Nitrogen=1%, Sulphur=0.5%, Ash= 2.5%. Calculate: a) Mass of air required for complete combustion of 1 kg of fuel b) Dry analysis both by mass and by volume of products of combustion when 15% excess air is supplied. (CO1)

5. Answer any one of the following:-

5-a. What are different types of boiler draught? For the maximum discharge conditions through a 10 chimney having height of 15 m determine the draught in mm of water when ambient air temperature is 15 degree C. (CO2)

10

5-b. Differentiate between jet and surface condenser. (CO2)

6. Answer any one of the following:-

- 6-a. Explain Brayton cycle in detail and also derive the expression for its efficiency in terms of 10 pressure ratio. (CO3)
- 6-b. In a Rankine cycle, the steam at inlet to turbine is saturated at a pressure of 40 bar and the 10 exhaust pressure is 0.5 bar. Assume flow rate of 10 kg/s. Determine: a) The pump work b)Turbine work c) Rankine efficiency d) Condenser heat flow e) Dryness at the end of expansion. (CO3)
- 7. Answer any one of the following:-
- 7-a. Dry saturated steam enters a nozzle at 12 bar and leaves at 1.5 bar with a dryness fraction of 10 0.95. Neglecting approach velocity, calculate the exit velocity. If 12% of heat drop is lost due to friction, find the percentage reduction in exit velocity. (CO4)
- 7-b. Explain constructional design and working of Pressure-Velocity Compounded impulse 10 turbine. (CO4)

8. Answer any one of the following:-

- 8-a. Explain boiler operation using computerized system in detail. (CO5) 10
- 8-b. How electrically actuated nozzles differ from automatic spray nozzles. Explain in detail. 10 (CO5)