Printed Page:-

Subject Code:- ACSE0404 Roll. No:

|                                             | NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA                                                                                                                |     |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                             | (An Autonomous Institute Affiliated to AKTU, Lucknow)<br>B Tech                                                                                                             |     |
|                                             | SEM: IV - THEORY EXAMINATION (2021 - 2022)                                                                                                                                  |     |
|                                             | Subject: Theory of Automata and Formal Languages                                                                                                                            |     |
| Time: 3                                     | Hours Max. Marks:                                                                                                                                                           | 100 |
| General I                                   | nstructions:                                                                                                                                                                |     |
| <ol> <li>The qu</li> <li>Section</li> </ol> | estion paper comprises three sections, A, B, and C. You are expected to answer them as directed.<br>A - Question No- 1 is 1 mark each & Question No- 2 carries 2 mark each. |     |
| 3. Section                                  | B - Question No-3 is based on external choice carrying 6 marks each.                                                                                                        |     |
| 5. No she                                   | et should be left blank. Any written material after a blank sheet will not be evaluated/checked.                                                                            |     |
|                                             | SECTION A 20                                                                                                                                                                |     |
| 1. Attemp                                   | ot all parts:-                                                                                                                                                              |     |
| 1-a.                                        | A Language for which no DFA exist is a (CO1)                                                                                                                                | 1   |
|                                             | (a) Regular Language                                                                                                                                                        |     |
|                                             | (b) Non-Regular Language                                                                                                                                                    |     |
|                                             | (c) May be Regular                                                                                                                                                          |     |
|                                             | (d) Cannot be said                                                                                                                                                          |     |
| 1-b.                                        | Which of the following option (Statement) is correct? (CO1)                                                                                                                 | 1   |
|                                             | (a) NFA is slower to process and its representation uses more memory than DFA                                                                                               |     |
|                                             | (b) DFA is faster to process and its representation uses less memory than NFA                                                                                               |     |
|                                             | (c) NFA is slower to process and its representation uses less memory than DFA                                                                                               |     |
|                                             | (d) DFA is slower to process and its representation uses less memory than NFA                                                                                               |     |
| 1                                           | Every regular grammar is (CO2)                                                                                                                                              | 1   |
|                                             | (a) context free grammar                                                                                                                                                    |     |
|                                             | (b) non context free grammar                                                                                                                                                |     |
|                                             | (c) english grammar                                                                                                                                                         |     |
| 1                                           | (d) none of the mentioned                                                                                                                                                   | 1   |
| 1                                           | $(a+b)^*$ is equivalent to (CO2)                                                                                                                                            | 1   |
|                                             | (a) $b^{*}a^{*}$                                                                                                                                                            |     |
|                                             | (b) $(a^*b^*)^*$                                                                                                                                                            |     |
|                                             | (c) $a \cdot b^{+}$                                                                                                                                                         |     |
| 1-e                                         | Context free languages are $(CO3)$                                                                                                                                          | 1   |
| 1 0.                                        | (a) Closed under union                                                                                                                                                      | 1   |
|                                             | (b) Closed under complementation                                                                                                                                            |     |
|                                             | (c) Closed under intersection                                                                                                                                               |     |
|                                             | (d) Not closed under union                                                                                                                                                  |     |
| 1-f.                                        | Give a production grammar that accepts the specified language L = { $a^i b^{2i}   i \ge 1$ } (CO3)                                                                          | 1   |
|                                             | (a) $\{S \rightarrow aSbb, S \rightarrow abb\}$                                                                                                                             |     |
|                                             | (b) $\{S -> aSb, S -> b\}$                                                                                                                                                  |     |
|                                             | (c) {S->aA, S->b, A->b}                                                                                                                                                     |     |
|                                             | (d) None of these                                                                                                                                                           |     |
| 1                                           | Which Automata takes stack as storage? (CO4)                                                                                                                                | 1   |

- (a) Finite Automa
- (b) Push Down Automata
- (c) Turing Machine
- (d) Regular Expression
- A language accepted by Deterministic Push down automata is closed under which of the 1 following? (CO4)
  - (a) Complement
  - (b) Union
  - (c) All of the mentioned
  - (d) None of the mentioned
- 1 If Turing machine accepts all the words of the language L and rejects or loops for other 1 words, which are not in L, then L is said to be \_\_\_\_ (CO5)

1

6

- (a) recursively enumerable
- (b) recursive
- (c) context free language (cfl)
- (d) none of them

1 Which of the following problems is undecidable? (CO5)

- (a) Finiteness problem for FSAs
- (b) Membership problem for CFGs
- (c) Equivalence problem for FSAs
- (d) Ambiguity problem for CFGs
- 2. Attempt all parts:-

1

| 2.a. | How will you find the Reverse of a regular language? Explain. (CO1)                                  |    | 2 |
|------|------------------------------------------------------------------------------------------------------|----|---|
| 2.b. | Define alphabet, language and strings. (CO2)                                                         |    | 2 |
| 2.c. | Eliminate the Unit productions from the following Grammar:<br>S->XY   a, X->Y, Y->Z   b, Z-> c (CO3) |    | 2 |
| 2.d. | List any two languages that can be implemented by both DFA and PDA. (CO4)                            |    | 2 |
| 2.e. | State halting problem of Turing Machine. (CO5)                                                       |    | 2 |
|      | SECTION B                                                                                            | 30 |   |

3. Answer any five of the following:-

| 5. Answer | any <u>nive</u> of the following:-                                                                                                                                                                                                                                     |   |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 3         | Construct a finite automaton (deterministic or nondeterministic) that recognizes the language over the alphabet {a, b, c} of all strings not containing the substring ba (CO1)                                                                                         | 6 |
| 3         | Construct a Mealy Machine that accepts all the strings ending in 01 and 11 over an alphabet $\Sigma = \{0, 1\}$ . Convert the same to a Moore Machine. (CO1)<br>Construct a Mealy Machine that accept string ending in 01 and 11. Convert the same to a Moore Machine. | 6 |
| 3-c.      | Explain Left Linear Grammar and Right Linear Grammar with the help of suitable examples. (CO2)                                                                                                                                                                         | 6 |
| 3-d.      | Describe and prove any 3 closure properties of regular languages (with example). (CO2)                                                                                                                                                                                 |   |
| 3.e.      | Show that the Grammar with rule $E \rightarrow E - E   E + E   E * E   E ^ E   a$ is ambiguous. Also                                                                                                                                                                   | 6 |
|           | rewrite an Unambiguous Grammar for the same. (CO3)                                                                                                                                                                                                                     | 6 |
| 3.f.      | Construct a DPDA which accepts the following language, (CO4)<br>$L = \{wcw^R \mid w \in \{a, b\}^*, \Sigma = \{a, b, c\} \}$                                                                                                                                           | 6 |

3.g.Write short notes on : (1) Linear Bounded Automata (2) Universal Turing machine (CO5)<br/>SECTION C50

4. Answer any one of the following:-

Draw an NFA that accepts a language L over an input alphabet  $\sum = \{a, b\}$  such that L 10 is the set of all strings where 3<sup>rd</sup> symbol from the right end is 'b'. Also convert the same to DFA. (CO1)

10

10

4 Convert the following NFA- $\varepsilon$  into NFA without  $\varepsilon$ . (CO1)



5. Answer any one of the following:-

4

- 5 State Pumping Lemma for Non-Regular languages. Prove that the language  $L=(a^nb^n \text{ where } 10 n \ge 0)$  is not regular. (CO2)
- 5 Write regular expression for the following Languages over  $\sum = \{x, y\}$  that contains: (CO2) 10
  - (i) Strings where number of x's are even
  - (ii) Strings with length at least 5.
  - (iii) Strings where 4<sup>th</sup> symbol from the end is y.
  - (iv) Strings where there are no two consecutive x's.
  - (v) Strings with length at most two.
- 6. Answer any one of the following:-

| 6-a.      | Write the steps to convert CFG to GNF. (CO3)                                                                                                               | 10 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6-b.      | State the pumping lemma for context free languages. Show that the language,<br>$L = \{0^n 1^n 2^n \mid n \ge 0\}$ is not a context free language. (CO3)    | 10 |
| 7. Answer | any <u>one</u> of the following:-                                                                                                                          |    |
| 7         | Compare Deterministic and Non deterministic PDA. Is it true that non deterministic PDA is more powerful than deterministic PDA? Justify your answer. (CO4) | 10 |

- 7 Compare FM and PDA. Construct a PDA accepting all palindromes over {a, b}. (CO4) 10
- 8. Answer any one of the following:-
- 8-a. Show that the union of two recursively enumerable languages is also a recursively 10 enumerable language and union of two recursive languages is recursive. (CO5)
- 8-b. Define turing machine and describe its capabilities. Construct a TM for the language:  $L = \{a^n b^n c^n \mid n \ge 0\}$  (CO5)