NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)
B.Tech

SEM: IV - THEORY EXAMINATION (2021-2022)
Subject: Optimization and Numerical Techniques
Time: 3 Hours
Max. Marks: 100
General Instructions:

1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed.
2. Section A - Question No- 1 is 1 mark each \& Question No- 2 carries 2 mark each.
3. Section B - Question No-3 is based on external choice carrying 6 marks each.
4. Section C - Questions No. 4-8 are within unit choice questions carrying 10 marks each.
5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A

1. Attempt all parts:-

1-a. A Linear Programming Problem have \qquad optimal solution (CO1)
(a) 1
(b) 2
(c) More than 1
(d) More than 2
involving artificial variables.(CO1)
(a) Simplex Method
(b) Big-M Method
(c) Dual Simplex Method
(d) Graphical Method

1-c. Branch and bound method divides the feasible solution space into smaller parts by (CO2)
(a) Branching
(b) Bounding
(c) Enumerating
(d) All of the above

1-d. In a pure integer programming problem(CO2)
(a) All the decision variable require integer solutions
(b) Few of the decisions variables require integer solution
(c) Different objective functions are mixed together
(d) None of the above

1-e. \quad The function $f(x)=2 x^{3}-3 x^{2}$ is (CO3)
(a) Convex for $x \leq 0.5$
(b) Convex for $x \geq 0.5$
(c) Convex for $\mathrm{x}<0.5$
(d) None of these

1-f. Every non-linear programming problem can be solved using (CO3)
(a) Lagrange's multiplier Method
(b) Kuhn tracker method
(c) Both Lagrange's multiplier Method \& kuhn tracker Method
(d) None of these

1-g. If $f(x)=x^{2}-153$ then the iterative formula for Newton Raphson Method is given by: (CO4)
(a) $\mathrm{x}_{\mathrm{n}+1}=0.5\left[\mathrm{x}_{\mathrm{n}}+\frac{153}{\mathrm{x}_{\mathrm{n}}}\right]$
(b) $x_{n+1}=0.5\left[x_{n}-\frac{153}{x_{n}}\right]$
(c) $x_{n+1}=0.5\left[\frac{153}{x_{n}}\right]$
(d) None of these

1-h. The process of finding the values inside the interval ($\mathrm{x}_{0}, \mathrm{x}_{1}$) is called (CO4)
(a) Interpolation
(b) Extrapolation
(c) Iterative
(d) Polynomial Equation

1-i. \quad Find the unit digit of (4137) ${ }^{754}$ (CO5)
(a) 9
(b) 7
(c) 3
(d) 1

1-j. The remainder is 29 , when a number is divided 56 . If the same number is divided by 8 , then what is the remainder? (CO5)
(a) 3
(b) 4
(c) 7
(d) 5
2. Attempt all parts:-
2.a. Write the primal problem in dual form (CO1)

Maximize $Z=2 x_{1}+4 \mathrm{x}_{2}$
Subject to constraints, $2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 2$
$\mathrm{x}_{1}+\mathrm{x}_{2} \leq 6$
where $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
2.b. What is zero-one IPP? (CO2)
2.c. Show that intersection of two convex sets is also convex set.(CO3)
2.d. Write the formula for Simpson's one-third rule. (CO4)
2.e. What is the probability that a leap year selected at random will contain 53 Sundays?(CO5)

SECTION B

3. Answer any five of the following:-

3-a. Solve the lpp by Graphical method-.(CO1).
$\operatorname{Max} z=6 x+4 y$
s.t $2 \mathrm{x}+3 \mathrm{y} \leq 20$,
$2 x+y \leq 16$, $x, y \geq 0$
3-b. Solve by Big M Method- (CO1)
Maximize $Z=x+3 y$

> s.t. $2 x+6 y \leq 8$
> $3 x+4 y \geq 5$
$x, y \geq 0$
3-c. Define i) All integer programming problem
ii) Mixed LPP

3-d. Discuss the need of integer programming in mathematical programming.(CO2)
3.e. Use the Lagrange's multiplier method to solve the following problems:(CO3)
$\operatorname{Minimize} Z=3 x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}+6 x_{1}+2 x_{2}$
Subject to $2 x_{1}-x_{2}=4$,

$$
x_{1}, x_{2} \geq 0
$$

3.f. Find the real root of the equation $3 x-\cos x-1=0$ correct to 4 decimal places by Regula falsi method.(CO4)
3.g. Write a short note on bijective function and prove that the function given by $f(x)=2 x^{3}+3$ is not bijective function. (CO5)

SECTION C
50
4. Answer any one of the following:-

4-a. Find the solution of $\operatorname{lpp} \operatorname{Max} z=8000 \mathrm{x}_{1}+7000 \mathrm{x}_{2}(\mathrm{CO1})$
Subject to $3 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 66$,
$\mathrm{x}_{1}+\mathrm{x}_{2} \leq 45$,
$\mathrm{x}_{1} \leq 20$,
$\mathrm{x}_{2} \leq 40$,
$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
4-b. A manufacturer produces two types of models A and B. Each model of the type A requires 4 hrs of grinding and 2 hrs of polishing; where as each model of the type B requires 2 hrs of grinding and 5 hrs of polishing. The manufacturer has 2 grinders and 3 polishers. Each grinder works 40 hrs in a week and each polisher works 60 hours in a week. Profit on A model is 3 rs . and on B model is rs. 4. Whatever is produced in a week is sold in the market. Find the maximize the profit.(CO1)
5. Answer any one of the following:-

5-a. Use branch and bound method technique to solve the following problem: (CO2)
Max. $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$
s.t.
$3 \mathrm{X}-2 \mathrm{Y} \leq 5$
$\mathrm{Y} \leq 2$
$\mathrm{X}, \mathrm{Y} \geq 0$ and are integers.
5-b. Solve the following integer programming problem using cutting plane procedure (CO2)
Max. $\mathrm{Z}=\mathrm{X}+2 \mathrm{Y}$
s.t.

$$
\begin{aligned}
& \mathrm{X}+\mathrm{Y} \leq 7 \\
& 2 \mathrm{Y} \leq 7 \\
& 2 \mathrm{X} \leq 11 \\
& \mathrm{X}, \mathrm{Y} \geq 0 \text { and are integers. }
\end{aligned}
$$

6. Answer any one of the following:-

6-a. Solve the following NLPP by the method of Lagrange multiplier: (CO3)

Minimize $Z=x_{1}^{2}+\left(x_{2}+1\right)^{2}+\left(x_{3}-1\right)^{2}$
Subject to $x_{1}+5 x_{2}-3 x_{3}=6, \quad x_{1}, x_{2}, x_{3} \geq 0$
6-b. Use the Kuhn-Tucker conditions to solve the following problems:(CO3)
Maximize $\quad f(x, y)=8 x^{2}+2 y^{2}$
Subject to $x^{2}+y^{2} \leq 9$,

$$
x, y \geq 0
$$

7. Answer any one of the following:-

7-a. Apply Crouts method to solve the equations: (CO4)
$\mathrm{x}+y-z=2 ; 2 x+3 y+5 z=-3 ; 3 x+2 y+-3 z=6$.
7-b. Develop the divided difference table from the data given below and obtain the interpolation polynomial $f(x)$ (CO4)

x	1	3	5	7	11
$f(x)$	5	11	17	23	29

also find the value of $f(19.5)$.
8. Answer any one of the following:-

8 -a. Solve the following-
A. An integer is chosen at random from two hundred digits. What is the probability that integers are divisible by 6 or 8 ? (CO5)
B. Three news papers and are published in a certain city. It is estimated from a survey that of the adult population: 10% read 20% read 14% read, 4% read both and 8% read both and, 5% read both and 2% read all three. Find the probability what percentage read at-least one of the papers? (CO5)

8-b. Solve the following-
A. The sum of squares of three numbers is 138 and the sum of their products taken two at a time is 131 . Find their sum. (CO5)
B. Find the largest number of 4 -digits divisible by 12,15 and 18. (CO5)
C. How many words can be formed by using all letters of the word "HISAR"? (CO5)

