Printed Pa		Subject Code:- AMICSE0306 Roll. No:	
	NOIDA INSTITUTE OF ENGINEERING A (An Autonomous Institute Aff M. Te	iliated to AKTU, Lucknow)	
	SEM: III - THEORY EXAM Subject: Discre	INATION (2021 - 2022)	
Time: 03	3:00 Hours	Max. Marks:	100
General Ir	nstructions:		
1. All q	questions are compulsory. It comprises of the	nree Sections A, B and C.	
very Sect No	v short type questions carrying 2 marks each tion B - Question No- 3 is Long answer typ tion C - Question No- 4 to 8 are Long answ		
	SECTION	N A	20
1. Attemp	t all parts:-		
1-a.	The binary relation {(1,1), (2,1), (2,2), (2, (CO1)	3), (2,4), (3,1), (3,2)} on the set {1, 2, 3} is	1
	 reflective, symmetric and transiti irreflexive, symmetric and transit neither reflective, nor irreflexive I irreflexive and antisymmetric 	ive	
1-b.	Which of the following function $f: Z \times Z \rightarrow 1$. $f(a, b) = a + b$ 2. $f(a, b) = a$ 3. $f(a, b) = b $ 4. $f(a, b) = a - b$	Z is not onto? (CO1)	1
1-c.	An identity element of a group has 1. associative 2. commutative 3. inverse 4. homomorphic	_ element. (CO2)	1
1-d.	If x * y = x + y + xy then (G, *) is 1. Monoid 2. Abelian group 3. Commutative semigroup 4. Cyclic group	(CO2)	1
1-e.	Let D30 = {1, 2, 3, 4, 5, 6, 10, 15, 30} and lower bounds of 10 and 15 respectively ard 1, 1,3 2, 1,5 3, 1,3,5	d relation be partial ordering on D30. The all e (CO3)	1

	4. None of these	
1-f.	A Poset in which every pair of elements has both a least upper bound and a greatest lower bound is termed as (CO3)	1
	1. lattice	
	2. sublattice	
	3. trail	
	4. walk	
1-g.	Let P: If Sahil bowls, Saurabh hits a century.; Q: If Raju bowls, Sahil gets out on first ball. Now if P is true and Q is false then which of the following can be true? (CO4)	1
	Raju bowled and Sahil got out on first ball	
	2. Raju did not bowled	
	3. Sahil bowled and Saurabh hits a century	
	Sahil bowled and Saurabh got out	
1-h.	$A \rightarrow (A \ v \ q) \text{ is a} $ (CO4)	1
	1. Tautology	
	2. Contradiction	
	3. Contingency	
	4. None of the mentioned	
1-i.	Let G be the non-planar graph with minimum possible number of edges. Then G has (CO5)	1
	1. 9 edges and 5 vertices	
	2. 9 edges and 6 vertices	
	3. 10 edges and 5 vertices	
	4. 10 edges and 6 vertices	
1-j.	The balance factor of a node in a binary tree is defined as (CO5)	1
•	addition of heights of left and right subtree	
	2. height of right subtree minus height of left subtree.	
	3. height of left subtree minus height of right subtree	
	4. height of right subtree minus one	
2. Attemp	ot all parts:-	
2-a.	Represent (A \oplus B) with venn diagram. (CO1)	2
2-b.	If (G, *) is a group and a is an element in G, such that a * a = a , then show that a = e	2
	, where e is identity element in G. (CO2)	
2-c.	Find the glb and lub of the sets $\{3,9,12\}$ and $\{1,2,4,5,10\}$ if they exist in the poset (Z ⁺ , I). (C03)	2
2-d.	Show that the propositions $P \rightarrow Q$ and $\neg P \lor Q$ are logically equivalent. (CO4)	2
2-e.	Define Euler graph. Give an example of Eulerian graph which is not Hamiltonian graph. (CO5)	2
	SECTION B	30
3. Answe	r any <u>five</u> of the following:-	
3-a.	Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ such that $f(a) = 2$, $f(b) = 3$, and $f(c) = 1$. Is f invertible, and if it is, what is its inverse? (CO1)	6
3-b.		6
	Find the solution of recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with $a_0=2$ and $a_1=7$. (CO1)	
3-c.	Let $G = (Z^2, +)$ be a group and let H be a subgroup of G where $H = \{(x, y) \mid x = y\}$. Find the left cosets of H in G. Here Z is the set of integers. (CO2)	6

- (i) Express G by its adjacency table.(ii) Does G have any loop or parallel edges?(iii) Find all simple path from D to E.
- (iv) Find all cycles in G.
- (v) Find the number of subgraphs of G with vertices C, D, E