Printed Pa	age:-	Subject Code:- AEC0301 Roll. No:
	NOIDA INSTITUTE OF ENGINEERING AND TECHNOIO (An Autonomous Institute Affiliated to AKT B.Tech. SEM: III - THEORY EXAMINATION (20)	U, Lucknow)
	Subject: Digital System Design	•
Time: 03	3:00 Hours	Max. Marks: 100
General In	nstructions:	
1. All q	uestions are compulsory. It comprises of three Sections A,	B and C.
shor • Sect • Sect	tion A - Question No- 1 is objective type question carrying type questions carrying 2 marks each. tion B - Question No- 3 is Long answer type - I questions cation C - Question No- 4 to 8 are Long answer type - II questioned sheet should be left blank. Any written material after a Blank	arrying 6 marks each. tions carrying 10 marks each.
	SECTION A	20
1. Attempt	t all parts:-	
1-a.	Hamming code is capable of (CO1)	1
	Only detect single-bit error	
	2. Only correct single-bit error	
	3. Detect and correct single bit error	
	4. Detect and correct multiple bit errors	
1-b.	Find the 2's complement of 1101011101000. (CO1)	1
	1. 1101011101000	
	2. 1001011101000	
	3. 1011101001	
	4. None of these	
1-c.	In four-variable K-map simplification, a group of eight with (CO2)	adjacent ones leads to a term 1
	1. one literal	
	2. two literal	
	3. three literal	
	4. four literal	
1-d.	What is a multiplexer? (CO2)	1
	1. It is a type of decoder which decodes several in	outs and gives one output
	2. A multiplexer is a device which converts many s	ignals into one
	3. It takes one input and results into many output	
	4. It is a type of encoder which decodes several in	outs and gives one output

1-e.	When both inputs of SR latches are high, the latch goes (CO3)	1
	1. Unstable	
	2. Stable	
	3. Indeterminate state	
	4. Bistable	
1-f.	What is a trigger pulse? (CO3)	1
	1. A pulse that starts a cycle of operation	
	2. A pulse that reverses the cycle of operation	
	3. A pulse that prevents a cycle of operation	
	4. A pulse that enhances a cycle of operation	
1-g.	The basic function of TTL gate is which of the following functions? (CO4)	1
	1. AND	
	2. OR	
	3. NOR	
	4. NAND	
1-h.	If a logic circuit has fanout of 4, then the circuit is (CO4)	1
	1. 4 input	
	2. has 4 outputs	
	3. can derive maximum of 4 outputs	
	4. Gives output 4 times the input	
1-i.	For 5K memory, how many address lines are needed? (CO5)	1
	1. 10	
	2. 13	
	3. 12	
	4. 9	
1-j.	Which one is volatile? (CO5)	1
	1. DROM	
	2. Secondary Memory	
	3. RAM	
	4. Random only memory	
2. Attemp	ot all parts:-	
2-a.	Draw the logical circuit of AND Gate using NOR Gate. (CO1)	2
2-b.	Minimise the following function in SOP minimal form using K- Maps: $f(A,B,C,D) = m(1, 5, 6, 12, 13, 14) + d(4)$. (CO2)	2
2-c.	Write the truth table of JK Flip-Flop. (CO3)	2
2-d.	State the advantages of ECL family. (CO4)	2
2-e.	Differentiate between PAL and PLA. (CO5)	2
	SECTION B	30
3 Answe	er any five of the following:-	

3-a.	Construct the Hamming code for the 4 bit data 1010. Consider the even parity. (CO1)	6
3-b.	Convert the following decimal numbers to the indicated bases: (a) 7562.45 to octal. (b) 1938.257 to hexadecimal. (c) 175.175 to binary. (CO1)	6
3-c.	Implement the SUM and CARRY Boolean functions of full adder with multiplexers. (CO2)	6
3-d.	Explain one digit BCD Adder using 7483 ICs. (CO2)	6
3-e.	Draw JK flip-flop and derive its characteristic equation. Explain how will you convert it into T flip-flop. (CO3)	6
3-f.	Draw the circuit diagram of CMOS NOT gate and explain its working. (CO4)	6
3-g.	Implement the following functions using PAL. F1 (A,B,C)= Σ (3,5,6,7) and F2 (A,B,C)= Σ (0,2,4,7). (CO5)	6
	SECTION C	50
4. Answe	r any <u>one</u> of the following:-	
4-a.	Realize the XOR and XNOR logic operation using NAND gate. (CO1)	10
4-b.	Find the complement of the following expressions: (a) $xy' + x'y$ (b) $(AB' + C)D' + E$ (c) $AB(C'D + CD') + A'B'(C' + D)(C + D')$ (d) $(x + y' + z)(x' + z')(x + y)$ (CO1)	10
5. Answei	r any <u>one</u> of the following:-	
5-a.	Design a combinational circuit that will compare two 4-bit numbers. (CO2)	10
5-b.	Minimize the given function by QM method. $F(A,B,C,D) = \sum m(0,1,2,3,10,11,12,13,14,15)$. (CO2)	10
6. Answe	r any <u>one</u> of the following:-	
6-a.	Design a synchronous Mod-10 counter using D or T flip-flops. (CO3)	10
6-b.	Explain universal shift register in detail. (CO3)	10
7. Answe	r any <u>one</u> of the following:-	
7-a.	Explain the following with respect to logic families: Fanout, Fan-In, Propagation delay and noise margin. (CO4)	10
7-b.	Explain Totem pole output connection of TTL logic family along with its applications? (CO4)	10
8. Answe	r any one of the following:-	
8-a.	Classify semiconductor Memories and explain Erasable PROM in detail. (CO5)	10

10

8-b.

Realize the given functions using PLD:

F1 = AB'C' + ABC' + ABC and F2 = A'BC + AB'C + ABC. (CO5)