Printed Page:-	Subject Code:- ACSIOT0301
	Roll. No:
NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA	
(An Autonomous Institute Affiliat	ted to AKTU, Lucknow)
R Tech	

SEM: III - THEORY EXAMINATION (2021 - 2022)
Subject: Data Structures and Algorithm Design

Time: 03:00 Hours Max. Marks: 100

General Instructions:

- 1. All questions are compulsory. It comprises of three Sections A, B and C.
- Section A Question No- 1 is objective type question carrying 1 mark each & Question No- 2 is very short type questions carrying 2 marks each.
- Section B Question No- 3 is Long answer type I questions carrying 6 marks each.
- Section C Question No- 4 to 8 are Long answer type II questions carrying 10 marks each.
- No sheet should be left blank. Any written material after a Blank sheet will not be evaluated/checked.

SECTION A

20

1. Attempt all parts:-

1-a. Let A be a two-dimensional array declared as follows:

A: array [1 ... 10][1 ... 15] of integer;

Assuming that each integer takes one memory location. The array is stored in row-major order and the first element of the array is stored at location 84, what is the address of the element A[i][j]? [CO1]

1

1

1

- 1. 15i + j + 84
- 2.15j + i + 84
- 3.10i + i + 89
- 4. None of These
- 1-b. The following sequence of operations is performed on a stack: PUSH (10), PUSH (20), POP, PUSH (10), PUSH (20), POP, POP, POP, PUSH (20), POP. The sequence of values popped out is: [CO1]
 - 1. 20, 10, 20, 10, 20
 - 2. 20, 20, 10, 10, 20
 - 3. 10, 20, 20, 10, 20
 - 4. 20, 20, 10, 20, 10
- 1-c. The algorithms like merge sort, quick sort and binary search are based on. [CO2]
 - 1. Greedy algorithm
 - 2. Divide and Conquer algorithm
 - 3. Hash table

1-d.	What is the speciality about the inorder traversal of a binary search tree? [CO2]	1
	1. It traverses in a non increasing order	
	2. It traverses in an increasing order	
	3. It traverses in a random fashion	
	4. It traverses based on priority of the node	
1-e.	Linear array are also called as [CO3]	1
	1. Straight Line array	
	2. One dimensional array	
	3. vertical array	
	4. Horizontal array	
1-f.	What data structure would you mostly likely see in non recursive implementation of a recursive algorithm? [CO3]	1
	1. Linked List	
	2. Stack	
	3. Queue	
	4. Tree	
1-g.	The no of external nodes in a full binary tree with n internal nodes [CO4]	1
	1. n	
	2. n+1	
	3. 2n	
	4. 2n+1	
1-h.	Height of a binary tree is [CO4]	1
	1. MAX(Height of left Subtree, Height of right subtree)+1	
	2. MAX(Height of left Subtree, Height of right subtree)	
	3. MAX(Height of left Subtree, Height of right subtree)-1	
	4. None of the above	
1-i.	What is the number of edges present in a complete graph having n vertices?[CO5]	1
	1. (n*(n+1))/2	
	2. (n*(n-1))/2	
	3. n	
	4. Information given is insufficient	
1-j.	A graph with all vertices having equal degree is known as a[CO5]	1
	1. Multi Graph	
	2. Regular Graph	
	3. Simple Graph	
	4. Complete Graph	
2. Attemp	ot all parts:-	
2-a.	Can we declare array size as a negative number?[CO1]	2

4. Parsing

2-b.	Write any two characteristics of Greedy Algorithm? [CO2]	
2-c.	Differentiate array and linked list.[CO3]	2
2-d.	Mention various points of difference between complete binary tree and almost complete binary tree.[CO4]	2
2-e.	Name the different ways of representing a graph? [CO5] SECTION B	2
30		
3. Answe	any <u>five</u> of the following:-	
3-a.	Examine the algorithm for Insertion sort and sort the following array: 16,15,4,3,2,1.[CO1]	6
3-b.	Write an algorithm to convert Infix expression into postfix expression.[CO1]	6
3-c.	Mention some methods for choosing the pivot element in quick sort?[CO2]	
3-d.	Sort the sequence 2,4,5,7,1,2,3,6 using Merge sort. Show all the required steps.[CO2]	
3-e.	Develop an algorithm for a Linear search and Binary search.[CO3]	6
3-f.	Draw a binary Tree for the expression : A * B - (C + D) * (P /Q)[CO4]	
3-g.	Discuss following with reference to graphs. (i) Directed graph (ii) Undirected graph (iii) Degree of vertex (iv)Null graph (v) Acyclic Graph [CO5]	6
	SECTION C	
50		
4. Answe	any one of the following:-	
4-a.	Explain Array? Describe the storage structure of array. Also explain various types of array in detail.[CO1]	10
4-b.	List the applications of Stack. What is Recursion? Explain Recursion for find a factorial of number in detail.[CO1]	10
5. Answe	any one of the following:-	
5-a.	What is Backtracking? Draw the state – space tree for 4-queens problem.[CO2]	10
5-b.	What is Dynamic programming? Apply this technique to find all pairs shortest path in a graph.[CO2]	10
6. Answei	any one of the following:-	
6-a.	What is linked list? Illustrate the use of linked lists to represent the polynomial.[CO3]	10
6-b.	Explain an algorithm to merge two sorted linked list into a single sorted list.[CO3]	10
7. Answe	any one of the following:-	
7-a.	Define an AVL tree. Obtain an AVL tree by inserting one integer at a time in the following sequence. 150, 155, 160, 115, 110, 140, 120, 145, 130, 147, 170, 180. Show all the steps.[CO4]	10
7-b.	What is a B-tree? Generate a B-tree of order 4 with the alphabets (letters) arrive in the sequence as follows: a, g, f, b, k, d, h, m, j, e, s, i, r, x, c, l, n, t, u, p [CO4].	10
8. Answei	any one of the following:-	
8-a.	Compare any two applications of Graph with your own example.[CO5]	10

10