
Printed Pa	age:- Subject Code:- ACSE0306 Roll. No:	
	NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow) B. Tech.	
	SEM: III - THEORY EXAMINATION (2021 - 2022) Subject: Discrete Structures	
Time: 03	3:00 Hours Max. Marks: 10	0
General Ir	nstructions:	
1. All q	questions are compulsory. It comprises of three Sections A, B and C.	
very Sector	tion A - Question No- 1 is objective type question carrying 1 mark each & Question No- 2 is short type questions carrying 2 marks each. tion B - Question No- 3 is Long answer type - I questions carrying 6 marks each. tion C - Question No- 4 to 8 are Long answer type - II questions carrying 10 marks each. sheet should be left blank. Any written material after a Blank sheet will not bluated/checked.	
	SECTION A 20	0
1. Attemp	t all parts:-	
1-a.	The binary relation {(1,1), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2)} on the set {1, 2, 3} is (CO1)	1
	 reflective, symmetric and transitive irreflexive, symmetric and transitive neither reflective, nor irreflexive but transitive irreflexive and antisymmetric 	
1-b.	Which of the following function $f : Z \times Z \rightarrow Z$ is not onto? (CO1) 1. $f(a, b) = a + b$ 2. $f(a, b) = a$ 3. $f(a, b) = b $ 4. $f(a, b) = a - b$	1
1-c.	An identity element of a group has element. (CO2) 1. associative 2. commutative 3. inverse 4. homomorphic	1
1-d.	If x * y = x + y + xy then (G, *) is (CO2) 1. Monoid 2. Abelian group 3. Commutative semigroup 4. Cyclic group	1
1-e.		1

	4. None of these		
1-f.	A Poset in which every pair of elements has both a least upper bound and a greatest lower bound is termed as (CO3)	1	
	1. lattice		
	2. sublattice		
	3. trail		
	4. walk		
1-g.	Let P: If Sahil bowls, Saurabh hits a century.; Q: If Raju bowls, Sahil gets out on first ball. Now if P is true and Q is false then which of the following can be true? (CO4)	1	
	Raju bowled and Sahil got out on first ball		
	2. Raju did not bowled		
	3. Sahil bowled and Saurabh hits a century		
	Sahil bowled and Saurabh got out		
1-h.	$A \rightarrow (A \ v \ q) \text{ is a} $ (CO4)	1	
	1. Tautology		
	2. Contradiction		
	3. Contingency		
	4. None of the mentioned		
1-i.	Let G be the non-planar graph with minimum possible number of edges. Then G has (CO5)	1	
	1. 9 edges and 5 vertices		
	2. 9 edges and 6 vertices		
	3. 10 edges and 5 vertices		
	4. 10 edges and 6 vertices		
1-j.	The balance factor of a node in a binary tree is defined as (CO5)	1	
•	addition of heights of left and right subtree		
	2. height of right subtree minus height of left subtree.		
	3. height of left subtree minus height of right subtree		
	4. height of right subtree minus one		
2. Attempt all parts:-			
2-a.	Represent (A \oplus B) with venn diagram. (CO1)	2	
2-b.	If (G, *) is a group and a is an element in G, such that a * a = a , then show that a = e	2	
	, where e is identity element in G. (CO2)		
2-c.	Find the glb and lub of the sets $\{3,9,12\}$ and $\{1,2,4,5,10\}$ if they exist in the poset (Z ⁺ , I). (C03)	2	
2-d.	Show that the propositions $P \rightarrow Q$ and $\neg P \lor Q$ are logically equivalent. (CO4)	2	
2-e.	Define Euler graph. Give an example of Eulerian graph which is not Hamiltonian graph. (CO5)	2	
	SECTION B	30	
3. Answe	r any <u>five</u> of the following:-		
3-a.	Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ such that $f(a) = 2$, $f(b) = 3$, and $f(c) = 1$. Is f invertible, and if it is, what is its inverse? (CO1)	6	
3-b.		6	
	Find the solution of recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with $a_0=2$ and $a_1=7$. (CO1)		
3-c.	Let $G = (Z^2, +)$ be a group and let H be a subgroup of G where $H = \{(x, y) \mid x = y\}$. Find the left cosets of H in G. Here Z is the set of integers. (CO2)	6	

- (i) Express G by its adjacency table.(ii) Does G have any loop or parallel edges?(iii) Find all simple path from D to E.
- (iv) Find all cycles in G.
- (v) Find the number of subgraphs of G with vertices C, D, E