Printed Page:-		Subject Code:- ACSE0304 Roll. No:	
	NOIDA INSTITUTE OF ENGINEERING AI (An Autonomous Institute Aff B.Teo	iliated to AKTU, Lucknow)	ER NOIDA
Time: 0	SEM: III - THEORY EXAM Subject: Digital Logid 3:00 Hours	INATION (2021 - 2022)	Max. Marks: 100
			Wax. Warks. 100
General II	nstructions:		
1. All c	questions are compulsory. It comprises of the	ree Sections A, B and C.	
very Sec Sec	tion A - Question No- 1 is objective type questions carrying 2 marks each tion B - Question No- 3 is Long answer type tion C - Question No- 4 to 8 are Long answer sheet should be left blank. Any writter luated/checked.	h. e - I questions carrying 6 mar er type - II questions carrying	rks each. g 10 marks each.
	SECTION	ON A	20
1. Attemp	t all parts:-		
1-a.	The logical expression $Y = \sum m(0, 3, 6, 7, 1)$	0, 12, 15) is equivalent to	(CO1) 1
	1. π M(0 , 3, 6, 7, 10, 12, 15)		
	2. πM(1, 2, 4, 5, 8, 9, 11, 13, 14)		
	3. ∑m(1, 2, 4, 5, 8, 9, 11, 13, 14)		
	4. ∑m(0, 2, 4, 6, 8, 10, 12, 14)		
1-b.	A switching function $f(A, B, C, D) = A'B'CI$ also be written as (CO1)) + A'BC'D + AB'C'D + AB'C	D + A'BCD can 1
	1. ∑m(1, 3, 5, 7, 9)		
	2. Σm(3, 5, 7, 9, 11)		
	3. Σm(3, 5, 9, 11, 13)		
4 -	4. None of these	on a allo ations of allot in most a 0. (O)	00)
1-c.	How many data select lines are required for	or selecting eight inputs? (Co	O2) 1
	1. 1 2. 2		
	3. 3		
	4. 4		
1-d.	One that is not the outcome of magnitude	comparator is (CO2)	1
	1. a > b	,	
	2. a – b		
	3. a < b		
	4. a = b		
1-e.	When is a flip-flop said to be transparent?	(CO3)	1
	 When the Q output is opposite th 	e input	
	2. When the Q output follows the in	put	
	3. When you can see through the IC		
	When the Q output is complement	ntary of the input	

1-f.	A basic S-R flip-flop can be constructed by cross-coupling of which logic gates? (CO3)	1
	1. AND or OR gates	
	2. XOR or XNOR gates	
	3. NOR or NAND gates	
	4. AND or NOR gates	
1-g.	How many flip-flops are required to construct a decade counter? (CO4)	1
	1. 4	
	2. 8	
	3. 5	
	4. 10	
1-h.	A 4-bit counter has a maximum modulus of (CO4)	1
	1. 3	
	2. 6	
	3. 8	
	4. 16	
1-i.	FPGA stands for (CO5)	1
	1. Full Programmable Gate Array	
	2. Full Programmable Genuine Array	
	3. First Programmable Gate Array	
	4. Field Programmable Gate Array	
1-j.	Which of the following comes under secondary memory/ies? (CO5)	1
	1. Floppy disk	
	2. Magnetic drum	
	3. Hard disk	
	4. All of the Mentioned	
2. Attempt	t all parts:-	
2-a.	Define positive logic and negative logic. (CO1)	2
2-b.	Define Multiplexer. (CO2)	2
2-c.	Enlist the Difference between latch and flip-flop. (CO3)	2
2-d.	Define primitive flow table with example. (CO4)	2
2-e.	How many 16K * 4 RAMs are required to achieve a memory with a capacity of 64k and a word length of 8 bits? (CO5)	2
	SECTION B	30
3. Answer	any <u>five</u> of the following:-	
3-a.	Construct the Hamming code for the 4 bit data 1010. Consider the even parity. (CO1)	6
3-b.	Implement the Boolean expression $F(A,B,C) = ABC' + A'B' + AC'$ using both universa logic gates. (CO1)	l 6
3-c.	Implement the DIFFERENCE and BORROW Boolean functions of half subtractor with multiplexer 2x1. (CO2)	n 6
3-d.	Explain BCD Adder with proper logic circuit diagram. (CO2)	6
3-e.	Discuss about static, dynamic and essential hazards in asynchronous sequentia circuits. (CO4)	l 6
3-f.	What is the modulus of the counter? Give difference between Synchronous and Asynchronous Counters. (CO3)	d 6
3-g.	Explain difference between PLA and PAL. (CO5)	6

SECTION C 50

	0_0				
4. Answei	r any <u>one</u> of the following:-				
4-a.	Minimize the given four variable logic function using Quine Mc-Clusky Method:- (CO1)	10			
	$F(A, B, C, D) = \sum m (0,1, 2, 3,5, 7, 8, 9, 11, 14)$				
4-b.	Simplify the logic expression using K map:- (CO1) $F(A, B, C, D, E) = \sum m(0, 5, 6, 8, 9, 10, 11, 16, 20, 24, 25, 26, 27, 29, 31)$	10			
5. Answei	r any <u>one</u> of the following:-				
5-a.	Design a combinational circuit that accepts a three-bit number and generates an output binary number equal to the square of the input number. (CO2)	10			
5-b.	Design 4 bit Gray to binary converter. (CO2)	10			
6. Answer any one of the following:-					
6-a.	Explain universal shift register in detail. (CO3)	10			
6-b.	Explain the Master-Slave Flip-Flop. How it overcome the race condition of J-K flip-flop? Use proper logic diagram. (CO3)	10			
7. Answer any one of the following:-					
7-a.	Describe the working of asynchronous decade counters. (CO4)	10			
7-b.	Design mod-10 synchronous counter. Implement it using JK-flip flops. (CO4)	10			
8. Answei	r any <u>one</u> of the following:-				
8-a.	Implement the following functions using PLA. $A(x,y,z) = \sum m(1,2,4,6)$, $B(x,y,z) = \sum m(0,1,6,7)$, $C(x,y,z) = \sum m(2,6)$ (CO5)	10			
8-b.	Draw the structure of a 4x4 static RAM and explain it's operation. (CO5)	10			