Printed Pa	age:-	Subject Code:- ACSBS0306
		Roll. No:
	NOIDA INSTITUTE OF ENGINEERING AND TECHNOI	OGY, GREATER NOIDA
	(An Autonomous Institute Affiliated to AKT	U, Lucknow)
		24 2022)
	SEM: III - THEORY EXAMINATION (20. Subject: Formal Language & Automata	21 - 2022) a Theory
Time: 03	3:00 Hours	Max. Marks: 100
General Ir	nstructions:	
1. All q	uestions are compulsory. It comprises of three Sections A,	B and C.
 Sect 	ion A - Question No- 1 is objective type question carrying	1 mark each & Question No- 2 is very
Sect	ion B - Question No- 3 is I ong answer type - I questions ca	arrving 6 marks each
 Sect 	ion C - Question No- 4 to 8 are Long answer type - II quest	ions carrying 10 marks each.
 No s 	heet should be left blank. Any written material after a Blank	sheet will not be evaluated/checked.
		20
1 Attornat	all parts:-	20
1. Allempi	Einite Automata has	1
1-d.		1
	1. Unlimited memory	
	2. No memory at all	
	3. Limited Memory	
	4. None of these	
1-b.	A language L is accepted by a FSM iff it is	1
	1. CFL	
	2. CSL	
	3. Recursive	
	4. Regular	
1-c.	Grammar is defined by number oftuples	1
	1.4	
	2.5	
	3. 3	
	4. 2	
1-d.	More than one Parse tree can be generated from a same has this property are known as:	e sentence. The Grammar which 1
	1. Ambiguous	

- 2. Unambiguous
- 3. Ambiguous and Unambiguous
- 4. Intersection

1-e.	Turing machine is more powerful than FSM because	1	
	1. Tape movement is confined to one direction only		
	2. It has no finite state control		
	3. It has the capability to remember arbitrary long sequence of input symbols		
	4. None of these		
1-f.	Turing machine was invented in by Alan Turing.	1	
	1. 1938		
	2. 1936		
	3. 1836		
	4. 1838		
1-g.	If every string of a language can be determined, whether it is legal or illegal in finite time, the language is called	, 1	
	1. Non-deterministic		
	2. Deterministic		
	3. Undecidable		
	4. Decidable		
1-h.	Halting problem is an example for?	1	
	1. Decidable problem		
	2. undecidable problem		
	3. complete problem		
	4. traceable problem		
1-i.	What does NP stands for in complexity classes' theory?	1	
	1. Non polynomial		
	2. Non-deterministic polynomial		
	3. Both (a) and (b)		
	4. None of the mentioned		
1-j.	Which of the following are the examples of NP-complete Problem	1	
	1. Knapsack problem		
	2. Hamiltonian path problem.		
	3. Subset sum problem.		
	4. All of above		
2. Attemp	t all parts:-		
2-а.	Differentiate between Kleene and Positive Closure.	2	
2-b.	Given Grammar Production generate the string for it $S \rightarrow abS \mid a$	2	
2-c.	Differentiate between PDA and Turing machine.	2	
2-d.	Define post correspondence problem.	2	
2-е.	Describe the importance of NP-Complete problems.	2	
	SECTION B	30	

3. Answe	er any five of the following:-	
3-а.	Construct a DFA with reduced states equivalent to regular expression 10+(0+11)0*1	6
3-b.	Define all tuples for a grammar.	6
З-с.	Correspondence between PDA and CFG. Justify the statement.	6
3-d.	Prove that every language accepted by PDA by final state is also accepted by same PDA by empty store	6
З-е.	Write short note on Church Turing Thesis.	6
3-f.	Find whether the lists $M = (ab, bab, bbaaa)$ and $N = (a, ba, bab)$ have a Post Correspondence Solution?	6
3-g.	Prove that 3-SAT is NP-complete.	6
	SECTION C	50
4. Answe	er any <u>one</u> of the following:-	
4-a.	Discuss Chomsky's Hierarchy of formal languages.Explain briefly about DFA and NFA?	10
4-b.	Find all strings of length 5 or less in the regular set represented by the following regular expressions: a) (ab+a)*(aa + b) b) (a*b + b*a)*a c) a* +(ab +a)*	10
5. Answe	er any <u>one</u> of the following:-	
5-a.	Compare Deterministic and Non deterministic PDA. Is it true that non deterministic PDA is more powerful than that of deterministic PDA? Justify your answer.	10
5-b.	Convert the following PDA into an equivalent CFG. δ (q0,a0,z0) \rightarrow (q1,z1z0) δ (q0,b,z0) \rightarrow (q1,z2z0) δ (q1,a,z1) \rightarrow (q1, z1z1) δ (q1,b,z1) \rightarrow (q1, λ) δ (q1,b,z2) \rightarrow (q1,z2z2) δ (q1,a,z2) \rightarrow (q1, λ) δ (q1, λ ,z2) \rightarrow (q1, λ) accepted by the empty stack.	10
6. Answe	er any <u>one</u> of the following:-	
6-a.	Define Turing Machine and explain transition tables and transition diagrams? Design a Turing Machine to accept the language L = {W W R W \in (a+b)}	10
6-b.	Explain the halting problem in details.	10
7. Answe	er any <u>one</u> of the following:-	
7-a.	Define the recursive languages. Do you agree that every recursive language is recursively enumerable languages. Justify your answer.	10
7-b.	Explain the Rice theorem and its relevance with Turing Machine.	10
8. Answe	er any one of the following:-	
8-a.	Write the non-deterministic sorting algorithm and also analyze its complexity?	10
8-b.	Briefly explain the classes NP-hard and NP-complete?	10