NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B.Tech.

(SEM: III THEORY EXAMINATION (2021-2022))

Subject Name: Engineering Mathematics-III

Time: 3Hours

General Instructions:

> All questions are compulsory. It comprises of three Sections, A, B, and C.

Section A Question No-1 is objective type questions carrying 1 mark each, Question No-2 is very short answer type carrying 2 mark each.

- Section B Question No-3 is Long answer type -I question with external choice carrying 6 marks each.
- Section C -Question No. 4-8 are Long answer type -II (within unit choice) questions carrying 10marks each.
- > No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

		<u>SECTION – A</u>		
1.	All	questions are compulsory-		CO
	a.	An analytic function with constant imaginary part is	(1)	CO1
	b.	If $2x - x^2 + ay^2$ is to be harmonic, then <i>a</i> should be	(1)	CO1
		(a) 1		
		(b) 2		
		(c) 3		
		(d) 0		
	c.	The value of $\oint \cos z dz$ along the closed curve C, where C: $ Z = 1$, is	(1)	CO2
	d.	The singularity $z = 0$ of $f(z) = \frac{\sin z}{z}$ is	(1)	CO2
		(a) pole		
		(b) essential singularity		
		(c) removable singularity		
		(d) none of these		
	e.	The equation $\left[\frac{\partial^2 z}{\partial x^2} + 2xy\left(\frac{\partial z}{\partial x}\right)^2 + \frac{\partial z}{\partial y} = 5x\right]$ is of order and degree	(1)	CO3
	f.	The general solution $u(x, y)$ of the partial differential equation $4u_{xx} - u_{yy} = 0$ is	(1)	CO3
		(a) $f(x) + g(y)$		
		(b) $f(x+2y) + g(x-2y)$		
		(c) $f(x+4y) + g(x-4y)$		
		(d) $f(4x + y) + g(4x - y)$		
	g.	Convolution theorem for Fourier transforms states that	(1)	CO4

Subject Code: AAS0301B

Max. Marks:100

Roll No:

	h.	The value of $Z\{1\}$, where Z is the z-transform operator, is	(1)	CO4
		(a) 1		
		(b) $\frac{1}{z-1}$		
		(c) $\frac{z}{z-1}$		
		(d)None of these		
	i.	A pipe can fill a tank in 5 hours. The part of tank filled in two hours is	(1)	CO5
	j.	A, B, C, D, E and F, not necessarily in that order, are sitting at a round table. A is	(1)	CO5
		between D and F, C is opposite to D and D and E are not on neighbouring chairs.		
		Which one of the following pairs must be sitting on neighbouring chairs?		
		(a) A and B		
		(b) C and E		
		(c) B and F		
		(d) A and C		
2.	All o	uestions are compulsory-	[5×2=10]	CO
	a.	Prove that the function $f(z) = sinhz$ is analytic.	(2)	C01
	b.	Explain Cauchy- Goursat theorem with example.	(2)	CO2
	c.	Classify the following partial differential equation	(2)	CO3
		$2\left(\frac{\partial^2 u}{\partial x^2}\right) + 4\left(\frac{\partial^2 u}{\partial x \partial y}\right) + 3\left(\frac{\partial^2 u}{\partial y^2}\right) = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + u$		
	d.	Find the Fourier sine transform of $e^{- x }$.	(2)	CO4
	e.	At what time between 5 and 6 O'clock will the hands of a clock be at right angle?	(2)	CO5
		<u>SECTION – B</u>		
2	Ang	war any five of the following	[5×6-20]	CO
5.		Discuss the analyticity of the function $f(z) = Pa(z^3)$ in the complex plane	[5×0=30]	
	a. h	Discuss the analyticity of the function $f(z) = Re(z^{-1})$ in the complex plane.	(0)	
	D.	State and prove Cauchy Residue Theorem. $\begin{bmatrix} \partial u & \partial u \end{bmatrix}$	(0)	
	С.	Find the solution of the partial differential equation $\left[\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u\right]$, where	(0)	05
		$u(x, 0) = 6e^{-3x}$ using method of separation of variables.		
	d.	Find the Fourier cosine transform of $F(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$	(6)	CO4
	e.	A, B, and C can complete a piece of work in 10, 15 and 18 days. In how many	(6)	CO5
		days, would all of them complete the same work working together?		
	f.	State and prove Liouvilles's Theorem.	(6)	CO2
	g.	A man rows at a speed of 8 Km/h in still water to a certain distance upstream and	(6)	CO5
		back to the starting point in a river which flows at 4 Km/h. Find his average speed for total journey.		

		<u>SECTION – C</u>				
4	Ans	wer any one of the following-	[5×10=50]	CO		
	a.	If $w = f(z) = u + iv$ is an analytic function and $u - v = e^{x}(cosy - siny)$ then	(10)	CO1		
		find analytic function w in terms of z.				
	b.	Show that the transformation $W = \left(\frac{5-4z}{4z-2}\right)$ transforms the circle $ z = 1$ into a	(10)	CO1		
		circle of radius unity in <i>w</i> -plane and find the centre of the circle.				
5.	Ans	Answer any one of the following-				
	a.	By the method of contour integration, prove that	(10)	CO2		
		$\int_{-\infty}^{\infty} \frac{\sin mx}{a^2 + x^2} dx = 0, m > 0, a > 0.$				
	b.	Obtain the series which represents the function $\left[\frac{z^2-1}{(z+2)(z+3)}\right]$ in the regions	(10)	CO2		
		(a) $ z < 2$				
		(b) $2 < z < 3$				
6	A m	(c) Z > 3				
0.		were any one of the following-	(10)	CO3		
		Use the method of separation of variables to solve the equation $\frac{\partial}{\partial t} = \frac{\partial}{\partial x^2}$. Given	(10)	005		
		that $\omega = 0$ when $t \to \infty$ as well as $\omega = 0$ at $x = 0$ and $x = L$.				
	b.	Solve the following partial differential equation	(10)	CO3		
	~	$(D^2 - 3DD' + 2D'^2)z = e^{2x-y} + e^{x+y} + \cos(x+2y)$	(10)	0.00		
7.	Ans	wer any one of the following-				
	a.	Using Fourier transform, solve the following equation	(10)	CO4		
		$\frac{\partial u}{\partial x} = c^2 \frac{\partial^2 u}{\partial x^2}, -\infty < x < \infty, t > 0$				
		(1, -1 < x < 0)				
		with $u(x, 0) = \begin{cases} -1, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$				
		(0, otherwise				
	b.	Using the Z-transform, solve $v_{k+2} - 2v_{k+1} + v_k = 3k + 5$.	(10)	CO4		
8.	Ans	Answer any one of the following-				
	a.	What day of the week was on June 5, 1999?	(10)	CO5		
	b.	Two taps A and B can fill a cistern in 30 minutes and 60 minutes, respectively.	(10)	CO5		
		There is a third exhaust tap C at the bottom of the tank. If all the taps are opened				
		at the same time, the cistern will be full in 45 minutes. In what time can exhaust				
		tap C empty the cistern when it is full?				