Printed F	Page:-	Subject Code:- AMTCSE0201
		Roll. No:
	NOIDA INSTITUTE OF ENGINEERING	AND TECHNOLOGY, GREATER NOIDA
	(An Autonomous Institute A	ffiliated to AKTU, Lucknow)
	M.T	ech.
	SEM: II - THEORY EXA	MINATION (2021 - 2022)
	Subject: High Perfo	rmance Computing
Time: 3	3 Hours	Max. Marks: 70
General 1	Instructions:	
		nd C. You are expected to answer them as directed.
-	on A - Question No- 1 is 1 marker & Question I	•
	on B - Question No-3 is based on external choice	
4. Sectio	on C - Questions No. 4-8 are within unit choice	questions carrying 7 marks each.
5. No she	eet should be left blank. Any written material a	after a blank sheet will not be evaluated/checked.
	SECTION	1 A 15
1. Attem	npt all parts:-	
1-a.	Memory system performance is largely capt	tured by_(CO1)
	(a) Latency	
	(b) bandwidth	
	(c) both latency and bandwidth	
	(d) none of above	
1	A term for simultaneous access to a resource	e, physical or logical. (CO2)
	(a) Multiprogramming	
	(b) Multitasking	
	(c) Threads	
	(d) Concurrency	
1-c.	Generalization of broadcast in Which each p	processor is(CO3)
	(a) Source as well as destination	
	(b) only source	
	(c) only destination	
	(d) none	

1-d.	Which of the following is not an application of Breadth First Search? (CO4)		1		
	(a) When the graph is a Binary Tree				
	(b) When the graph is a Linked List				
	(c) When the graph is a n-ary Tree				
	(d) hen the graph is a Ternary Tree				
1-e.	which of the following are methods for containing interaction overheads.(CO5)		1		
	(a) maximizing data locality				
	(b) minimize volumn of data exchange				
	(c) min frequency of interactions				
	(d) all the above				
2. Attempt all parts:-					
2.a.	What is accelerator? (CO1)		2		
2.b.	What is the latency? (CO2)		2		
2.c.	What is the workpool? (CO3)		2		
2.d.	Define Serial program? (CO4)		2		
2.e.	Define the CPU utilization? (CO5)		2		
	SECTION B	20			
3. Answ	er any five of the following:-				
3-a.	Explain Scope of Parallel Computing? (CO1)		4		
3-b.	What is the application of parallel Computing? (CO1)		4		
3-c.	Define the cache-coherence? (CO2)		4		
3-d.	Explain the reasons for cache-coherence? (CO2)		4		
3.e.	Define the tree data structure. Explain with example? (CO3)		4		
3.f.	Compare the SPMD and MPMD? CO4		4		
3.g.	What is performance? Explain how to measure the performance? CO5		4		
	SECTION C	35			
4. Answ	er any <u>one</u> of the following:-				
4-a.	Explain Multi-Core architecture? (CO1)		7		
4-b.	What are different decomposition techniques? Explain in details. (CO1)		7		
5. Answ	er any <u>one</u> of the following:-				
5-a.	Define the register to register architecture? (CO2)		7		

5-b.	Discuss the difference between super computer and general computer? (CO2)	7
6. Answer	any one of the following:-	
6-a.	Explain the need for parallel processing in engineering design and automation. (CO3)	7
6-b.	What are principles of Message Passing Programming. (CO3)	7
7. Answer	any one of the following:-	
7-a.	Explain in detailed partitioning Global Address Space PGAS language? Explain. (CO4)	7
7-b.	What is Scheduler? Explain the Task scheduling.(CO4)	7
8. Answer	any one of the following:-	
8	Write down a basic How will you define interconnection communication between these	7
	processes? (CO5)	
8	What are different ways to map a set of processes to a two-dimensional grid? (CO5)	7