NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)
MCA
SEM: II - THEORY EXAMINATION (2021-2022)
Subject: Data Structures and Analysis of Algorithm
Time: 3 Hours
Max. Marks: 100

General Instructions:

1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed.
2. Section A - Question No- 1 is 1 marker \& Question No- 2 carries 2 marks each.
3. Section B-Question No-3 is based on external choice carrying 6 marks each.
4. Section C - Questions No. 4-8 are within unit choice questions carrying 10 marks each.
5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

SECTION A 20

1. Attempt all parts:-

1-a. What is the difference between a flowchart and a pseudocode? (CO1)
(a) A flowchart is textual but the pseudocode is a diagram
(b) A flowchart is a schematic description of an algorithm, while pseudocode is a textual description of an algorithm.
(c) A flowchart and a pseudocode are the same
(d) A flowchart is a diagram while the pseudocode is written in a programming language Java

1-b. Which of the following cases does not exist in the complexity theory? (CO1)
(a) Best case
(b) Worst case
(c) Average case
(d) Null case

1-c. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? (CO 2)
(a) Queue
(b) Circular queue
(c) Dequeue
(d) Priority queue

1-d. What is the other name for a postfix expression? (CO2)
(a) Normal polish Notation
(b) Reverse polish Notation
(c) Warsaw notation
(d) Infix notation

1-e. For the best case input, the running time of an insertion sort algorithm is? (CO3)
(a) Linear
(b) Binary
(c) Quadratic
(d) Depends on the input

1-f. Which of the following ways can be used to represent a graph? (CO3)
(a) Adjacency List and Adjacency Matrix
(b) Adjacency List, Adjacency Matrix and Incidence Matrix
(c) Adjacency List and Incidence Matrix
(d) None of These

1-g. What is the possible number of binary trees that can be created with 3 nodes, giving the sequence N, M, L when traversed in post-order (CO4)
(a) 15
(b) 3
(c) 5
(d) 8

1-h. Which of the following pair's traversals on a binary tree can build the tree uniquely? (CO4)
(a) post-order and pre-order
(b) post-order and in-order
(c) post-order and level order
(d) level order and preorder

1-i. \quad Best case complexity of QuickSort is: (CO5)
(a) $\mathrm{O}(\log \mathrm{N})$
(b) $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
(c) $\mathrm{O}(\mathrm{N})$
(d) None of these

1-j. A \qquad in a graph G is a circuit which consists of every vertex (except first/last vertex) of G exactly once.(CO5)
(a) Euler path
(b) Hamiltonian path
(c) Planar graph
(d) Path complement graph
2. Attempt all parts:-
2.a. Define Dynamic memory allocation. (CO1) 2
2.b. What are benefits of circular queue ? (CO2) 2
2.c. Draw a directed graph with five vertices \& seven edges. (CO3) 2
2.d. Define Complete Binary Tree and its features. (CO4) 2
2.e. Define Negative Weight in a graph with Example. (CO5) 2

SECTION B 30
3. Answer any five of the following:-

3-a. Write a function to delete a node from the end of linked list. (CO1) 6
3-b. List down the properties of Algorithm. Write algorithm to search an element in an 6 array. (CO1)

3-c. Convert the given infix expression to prefix using stack: $A^{*}(B+D) / E-F^{*}(G+H / K) .(C O 2)$

3-d. Write algorithm for deletion of an element in circular queue. Also check for Overflow
condition. (CO2)
3.e. Compare adjacency matrix and adjacency list representations of graph. (CO3)
$\begin{array}{lll}\text { 3.f. What is binary search tree(BST)? Suppose the numbers } 7,5,1,8,3,6,0,9,4,2 \text { are inserted } & 6 \\ \text { in that order into an initially empty binary search tree. Make the binary search tree. (CO4) }\end{array}$
3.g. Discuss the Partition Algorithms with an example. (CO5)

SECTION C
4. Answer any one of the following:-

4-a. Write a program in C to perform insertion and deletion operations in circular linked list. 10 (CO1)

4-b. Write a program in C to sort elements of the array in descending order. (CO1)
5. Answer any one of the following:-

5-a. The keys $12,18,13,2,3,23,5$ and 15 are inserted into an initially empty hash table of length 10 using open addressing with hash function $\mathrm{h}(\mathrm{k})=\mathrm{k}$ mod 10 and linear probing. What is the resultant hash table? (CO2)

5-b. What is Tower of Hanoi problem? Explain solutions of Tower of Hanoi problem using proper tree representation where number of disks $\mathrm{n}=3$ and towers are labeled as $\mathrm{A}, \mathrm{B}, \mathrm{C}$. (CO2)
6. Answer any one of the following:-

6-a. Explain at least five applications of Depth First Search in detail (CO3)
6-b. What is heap? Differentiate between max-heap and min-heap. Build a Max-heap H of the following elements : 60,33,50,22,55,40,11,22,65,30 (CO3)
7. Answer any one of the following:-

7-a. Given the inorder and Preorder sequence of a binary tree, construct the original binary tree Inorder: EACKFHDBG

Preorder: FAEKCDHGB
Also write the Algorithm for same.(CO4)
7-b. Insert elements $12,5,89,33,61,49,22,17$ and 20 in an initially empty AVL tree. Show 10 proper rotation to maintain the tree as AVL. (CO4)
8. Answer any one of the following:-

8-a. \quad Determine an LCS of $\langle 1,0,0,1,0,1,0,1\rangle$ and $<0,1,0,1,1,0,1,1,0\rangle$ (CO5)
8-b. Define Single Source problem. Explain Dijkstra's Algorithm in detail with example and analyze its efficiency. (CO5)

