NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute)

Affiliated to Dr. A.P.J. Abdul Kalam Technical University, Uttar Pradesh, Lucknow
 M.TECH

FIRST YEAR (SEMESTER-II) THEORY EXAMINATION (2020-2021)
(Objective Type)

Max. Mks. : 40
Time : 70 Minutes

Subject Code: AMTME021

General Instructions:

All questions are compulsory.
Question No- 1 to 5 are objective type question carrying 2 marks each
Question No- 6 to 20 are also objective type/Glossary based question carrying 2 marks each.

Q.No	Question Content	Question Image	Category	Sub Category	Marks	Type	Difficulty	Correct	Option1	Option2	Option3	Option4
1	The area bounded by all the given constraints is called		Single Choice Questions	Single Choice Questions	2	Single Choice	Brilliant	basic solution	feasible region	basic solution	non feasible region	optimum basic feasible solution
2	The method of finding an initial solution based upon opportunity costs is called \qquad		Single Choice Questions	Single Choice Questions	2	Single Choice	Brilliant	Vogel's approximation	the northwest corner rule	Vogel's approximation	Least Cost method	None of above
3	For any function f , a point x minimizes f if and only if 0 \∈ \∂f(x).		Single Choice Questions	Single Choice Questions	2	Single Choice	Brilliant	TRUE	TRUE	FALSE		
4	If arrivals are according to Poisson process then distribution of inter arrival times is		Single Choice Questions	Single Choice Questions	2	Single Choice	Brilliant	Exponential	Gamma	Chi-square	Exponential	Normal
5	The solution to a transportation problem with m -sources and\ n-destinations is feasible if the numbers of allocations are \qquad		Single Choice Questions	Single Choice Questions	2	Single Choice	Brilliant	m+n-1	m+n	mn	m-n	m+n-1
6	Maximum value of a 3-d plane is to be found over a circular region. \qquad if we increase the radius of the circular region.		Glossary I	Glossary I	2	Single Choice	Brilliant	Maximum value increases and minimum value goes lesser	Maximum value increases and minimum value goes lesser	$(3,3,3)$	Increases	
7	\qquad the points on the plane $x+y+z=9$ which are closest to origin.		Glossary I	Glossary I	2	Single Choice	Brilliant	$(3,3,3)$	Maximum value increases and minimum value goes lesser	$(3,3,3)$	Increases	
8	The span of a Astroid is increased along both the x and y axes equally. Then the maximum value of: $\mathrm{z}=\mathrm{x}+\mathrm{y}$ along the Astroid is \qquad .		Glossary I	Glossary I	2	Single Choice	Brilliant	Increases	Maximum value increases and minimum value goes lesser	(3,3,3)	Increases	
9	The incoming variable column in the simplex algorithm is called \qquad .		Glossary II	Glossary II	2	Single Choice	Brilliant	Key Column	Key Column	key element	scarce resource	
10	The intersection value of key column and key row is called		Glossary II	Glossary II	2	Single Choice	Brilliant	key element	Key Column	key element	scarce resource	
11	A resource which is completely utilized is called \qquad in simplex.		Glossary II	Glossary II	2	Single Choice	Brilliant	scarce resource	Key Column	key element	scarce resource	
12	In univariate unconstrained optimization the decision variables can be \qquad .		Glossary III	Glossary III	2	Single Choice	Brilliant	Continuous	Continuous	-\∞	N-2	
13	If a function is strictly increasing then \qquad is the minima value.		Glossary III	Glossary III	2	Single Choice	Brilliant	-\∞	Continuous	-\∞	N-2	

Q.No	Question Content	Question Image	Category	Sub Category	Marks	Type	Difficulty	Correct	Option1	Option2	Option3	Option4
14	If the derivative of the objective function is a polynomial of order \‘N\’ and has roots which are repeated thrice, then \qquad many stationary points exist for the objective function.		Glossary III	Glossary III	2	Single Choice	Brilliant	N-2	Continuous	-\∞	N-2	
15	The \qquad distribution is sometimes used to describe the time between arrivals.		Glossary IV	Glossary IV	2	Single Choice	Brilliant	fundamental matrix F	fundamental matrix F	transition matrix	Poisson	
16	The \qquad indicates the probability that an entity in the Markov process is in a particular state.		Glossary IV	Glossary IV	2	Single Choice	Brilliant	transition matrix	fundamental matrix F	transition matrix	Poisson	
17	The \qquad determine(s) the equilibrium of a Markov process.		Glossary IV	Glossary IV	2	Single Choice	Brilliant	Poisson	fundamental matrix F	transition matrix	Poisson	
18	Successful use of the simulation approach requires both knowledge of the problem to be solved and knowledge of \qquad .		Glossary V	Glossary V	2	Single Choice	Brilliant	computer programming	computer programming	time-consuming, expensive	system simulation	
19	$\begin{array}{l}\text { Development of a useful simulation model is often a(n) } \\ \text { and } \\ \text { task. }\end{array}$		Glossary V	Glossary V	2	Single Choice	Brilliant	time-consuming, expensive	computer programming	time-consuming, expensive	system simulation	
20	The model used to train military personnel in urban warfare would be an example of \qquad .		Glossary V	Glossary V	2	Single Choice	Brilliant	system simulation	computer programming	time-consuming, expensive	system simulation	

